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does not sustain any load: this strongly limits its application in many indus-
trial fields (e.g., the aerospace sector). Herein, we used cross-linked electrospun
PVP-silica blankets and TiO, nanoparticles to coat hemp blankets, producing a
multilayer material (MM) by surface charge interaction. The MM exhibited lower
stiffness than the original hemp fabric but still good mechanical behavior, VO class
at the UL 94 vertical burning test, and good stretchability even after direct flame
exposure. Further, burn-through and cone calorimetry tests revealed that MM is
an excellent smoke suppressant and fireproof fabric, with very low total smoke
release values (as low as 4.9 vs. — 33.3 m?/m? measured for hemp) and its structure
remained intact for at least — 1 min. Finally, as all the aforementioned experimen-
tal activity, though necessary and unsubstantial, is usually quite time-consuming,
two Machine Learning models were developed and exploited to predict the fire
performances related to the multilayer material. Despite the incomplete start-
ing datasets, the implemented models accounted for a successful prediction of
the target parameters (namely, Time to Ignition and peak of Heat Release Rate),
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thanks to the assistance of ChatGPT and the exploitation of made-on-purpose

decision trees.

GRAPHICAL ABSTRACT
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Introduction

Electrospinning is a well-known technology for manu-
facturing polymer nanofibers with multiple architec-
tures [1, 2]. The wide application of such methodol-
ogy is mainly due to its capability to produce micro/
nanofibers ranging from 2 nm to several micrometers,
while conventional processes only allow for the fab-
rication of larger continuous fibers. Owing to these
peculiarities, electrospinning is frequently applied
in medical areas (e.g., tissue engineering), where
nanofibers exhibiting specific electronic and photo-
catalytic properties are highly desired [1, 3, 4]. On the
other side, recently, the demand for electron nanofib-
ers with excellent thermal behavior, flame retardancy,
and mechanical response is increasing, as they can
be employed to obtain multifunctional nanofibrous
nonwovens, air filtration membranes, fire protective
coatings, and reinforced polymeric composites [5-8].
However, many products based on polymer electro-
spun nanofibers, especially the ones produced start-
ing from safe and sustainable poly(vinyl pyrrolidone)
(PVP) and poly(vinyl alcohol) (PVA), do not show
good mechanical properties, making them suitable as
reinforcements but not as structural components [9,
10]. This issue can be overcome through the incorpo-
ration of solid particles into the polymer matrix: as a
result, its mechanical performances, such as stiffness,
toughness, and impact strength, improve [11-13];
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however, in the case of micro/nanofibers the effective-
ness of fillers in contrasting this issue is limited. PVP-
based nanofibers can be used for the preparation of
materials employed in medicine and other biological
systems [14, 15], although the high PVP solubility in
water strongly limits the application of its electrospun
blankets, causing low durability at different operative
conditions [16, 17]. To overcome this limitation, the
crosslinking of electrospun polymeric nanofibers by
thermal treatment is one of the most feasible possibili-
ties [5, 18, 19], though it often leads to an unwanted
shrinkage of the annealed samples. Newsome et al.
demonstrated that the incorporation of sub-microme-
ter silica particles into electrospun PVP fibers can pre-
vent the occurrence of shrinkage phenomena during
their crosslinking by heat treatment at 200 °C, leading
to high-quality water- and moisture-resistant compos-
ite fibers [20]. Following a similar procedure, Passaro
et al. produced crosslinked silica/PVP electrospun
composite fibers showing high water resistance and
negligible shrinkage [19, 21].

In the context of sustainability, natural fibers such
as kenaf, hemp, flax, and jute are becoming more and
more crucial to developing greener fiber-reinforced
polymeric composites, as their exploitation results in
a remarkable reduction of weight, CO, release, and
costs [22-24]. Among the natural fibers, hemp can be
employed in several industrial applications; recent
statistics confirm, for the U.S. market, an expected



J Mater Sci (2025) 60:1019-1040 1021

value of USD 16.75 billion, with a compound annual
growth rate of 17.1% from 2023 to 2030 [25]. One draw-
back related to the use of sustainable hemp fibers is
their high flammability: thus, many chemical strate-
gies have been developed to flame retard these fibers
[26]. However, most of these methodologies consist of
time-consuming procedures involving low sustainable
nitrogen- and phosphorus-based compounds, causing
high energy utilization and the depletion of natural
resources [27, 28]. In this context, the deposition via
sol-gel chemistry of blankets made of crosslinked sil-
ica/PVP electrospun composite fibers on hemp rugs
may represent an effective, affordable, and timesav-
ing approach to preparing self-extinguishing multi-
layer materials, without the use of any N- or P-based
compounds.

For these reasons, in this work, we thoroughly
investigated a multilayer material composed of hemp
rugs coated using blankets made of crosslinked sil-
ica/PVP electrospun composite fibers. The adhesion
between these materials was obtained by electrostatic
interactions. An acidic solution containing titanium
dioxide nanoparticles was employed along the process
to tune the proper surface charge on the PVP-based
blankets. We deeply investigated the fire behavior
and flammability of the produced multilayer material,
together with its mechanical response. The multilayer
material kept the sustainable features of its compo-
nents unchanged, but showed self-extinguishing capa-
bility, excellent smoke suppressant behavior, and very
good mechanical strength, overcoming all the limita-
tions of hemp rugs and PVP-based blankets.

Finally, to overcome the restraints related to the
need to (1) perform a huge number of destructive
tests and (2) synthesize and characterize several flame
retardant formulations, aiming to design new effective
flame retardant polymeric and textile materials, we
developed and implemented two robust and reliable
models through a Machine Learning (ML) approach,
suitable for predicting two parameters (i.e., Time to
Ignition and peak of Heat Release Rate, from forced-
combustion tests) for the investigated electrospun
PVP-based multilayer material. Artificial intelligence
models, especially ML ones (e.g., artificial neural net-
works, decision trees) and metaheuristic algorithms
(e.g., grey theory-white shark optimizer), are being
increasingly applied in the predictive study and opti-
mization of morphological, mechanical, viscoelastic,
and functional (e.g., soundproofing) properties of new
polymeric and textile products [29-32], overcoming

the main limitations of numerical simulation models
[33]. Some literature reports thoroughly discuss the
application of ML models on different input data also
for the prediction of thermal and fire performances
of polymeric materials [34-37]. Indeed, ML is one of
the most reliable predictive methods, as it does not
involve any arbitrary assignment or the use of prede-
termined equations, but it learns information directly
from data relying on algorithms (e.g., locally weighted
regression algorithms) or computational systems [31,
38].

However, it frequently occurs that the available
dataset, employed for building the machine learning
model, shows several missing experimental values.
This may negatively affect the accuracy of the neural
network and thus the prediction. To overcome this
issue, after a statistical evaluation of these datasets
and their distributions, chat generative pre-trained
transformer (ChatGPT), a chatbot developed by Ope-
nAl, can replace the missing values with mean, mode,
or median, and suggest the best ML model, suitable
for the prediction of specific parameters [39—-41]. This
quite new strategy was recently demonstrated by
Bifulco et al. [42] and Amor et al. [32, 43, 44].

Therefore, in this work, we aim to demonstrate that
the integration of ChatGPT to perform a data improve-
ment and the implementation of well-designed ML
models allow for the prediction of fire behavior with
satisfactory accuracy, even when some input data
are missing. These findings may pave the way for
the design and implementation of novel and reliable
Al-based tools in materials science and technology,
which, far from aiming to skip the always required
experimental activity, can significantly help the
researchers in reducing the time efforts, leading to the
envisaged research objectives.

Materials and methods
Materials

Hemp (H) sheets, supplied by MAEKO S.r.l. (Milan,
Italy), were used without any pretreatment. Tetraethyl
orthosilicate (TEOS, > 99%), ammonium hydroxide
(30-33% NHj; in H,0), ethanol (99.8%), polyvinylpyr-
rolidone (PVP, MW: 1300000 g mol ), purchased from
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany),
were used to produce the PVP-silica blankets. Tita-
nium dioxide nanoparticles (TiO, P90) from Evonik
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(Hanau-Wolfgang, Germany), hydrochloric acid (37
wt.%), and acetic acid (98%) from Sigma-Aldrich were
used for the preparation of the multilayer.

Manufacturing of the multilayer material

PVP-silica blankets were fabricated by electrospin-
ning, following the same procedure previously
reported [21]. The SiO, nanoparticles were prepared
through the Stober sol-gel method using TEOS as
a precursor. A suspension (40 wt.%) of silica parti-
cles in ethanol was mixed with an ethanol solution
(20 wt.%) of PVP. The resulting suspension was elec-
trospun under a voltage of 30 kV at room tempera-
ture and a humidity of (45+10)%, ensuring a flow
rate of 0.100 mL min". The electrospun non-woven
mats were dried at 80 °C for 60 min, then slowly heat-
treated from 150 to 200 °C, and finally kept for 6 h at
200 °C. Such thermal treatment makes the PVP matrix
of the composite mats resistant to humidity, without
significant shrinkage, thanks to the backbone of silica
nanoparticles embedded into the fibers. Moreover, the
sol-gel silica particles are partly exposed at the fib-
ers’ surface, which allows for their surface chemistry
exploitation [21, 45].

The hemp/PVP-silica multilayer material was pre-
pared favoring the adhesion between the blankets
through electrostatic interaction, as in a layer-by-layer
manufacturing approach. In a typical procedure, first,
a single layer (5 x 5 x 0.1 cm®) of hemp was soaked for
5 min in a water solution, acidified by using HCI,
at pH 2.5, which is slightly higher than the isoelec-
tric point (2.0-2.5) of silica nanoparticles, but lower
than that of hemp (>3.0) [46]. The deposition of one
PVP-silica blanket (5 x 5 x 0.05 cm®) was performed
on each side of the hemp sample, assisted by electro-
static interaction. To improve the adhesion of blankets
with hemp in the bilayered material (named H-2PVP),
this was thermally treated in an oven for 1 h at 80 °C.
H-2PVP was further coated by 4 layers of PVP-silica
blankets on each side to improve its fire behavior (see
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material”). To obtain a good elec-
trostatic interaction and thus a satisfactory adhesion
between the PVP-silica blankets, H-2PVP was soaked
for 5 min in a water suspension of TiO, nanoparticles
(0.1 M), acidified by using acetic acid (at pH 5). Then,
H-2PVP was kept in an oven for 1 h at 80 °C to support
the condensation reactions between Si-OH and Ti-OH
groups and ensure a neutral charge on the surface of
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the bilayered material. To create a positive charge on
the surface of the thermally treated H-2PVP, 2 mL of
the solution containing TiO, particles at pH 5 were
uniformly distributed on its surface before laying a
dried PVP-silica blanket, which is expected to become
negatively charged at that pH value. To promote the
electrostatic interaction and the adhesion of the PVP-
silica blanket on the surface of H-2PVP, the blanket
was roll-pressed with a glass rod, removing the excess
solution, and then the sample was kept in an oven for
20 min at 80 °C. This procedure was repeated on the
other side of H-2PVP and for further three times (a
total of 10 PVP-silica layers) to obtain a multilayer
material (named H-10PVP). Finally, H-10PVP under-
went a thermal treatment at 80 °C for 1 h to achieve
a dried sample that appeared completely different,
when compared to the material assembled by the
simple deposition of five PVP-silica blankets on each
side of a hemp layer (named H-as10PVP). The whole
procedure is schematized in Fig. 1A and the two mul-
tilayer samples are shown in Fig. 1B.

Experimental characterization

The weight per unit area was measured for hemp
and H-10PVP multilayer samples by weighing a sam-
ple with a specific area of 25 cm?. The following val-
ues were obtained: 234 g/m? for H and 428 g/m? for
H-10PVP.

The washing fastness of multilayer material was
evaluated by employing a solution containing 4 g/L of
commercial detergent; the liquor ratio was 50:1. Each
washing step was performed at 40 °C for 5 min. After
each washing cycle, the fabric was removed, squeezed,
and rinsed with tap water. Then, repeated washing
was carried out until a total of 250 min was reached
[46, 47].

The chemical analysis of the material was per-
formed by Fourier-transform infrared (FTIR) spec-
troscopy in Attenuated Total Reflectance (ATR) mode,
using a Nicolet 5700 spectrometer (ThermoFisher,
Waltham, MA). The spectra were collected from 32
scans with a resolution of 4 cm™. The char samples
produced after flame spread tests were also analyzed
by ATR-FTIR spectroscopy.

The surface morphology and chemical composition
of the prepared material and the residual char were
examined using an EVO 15 scanning electron micro-
scope (SEM) from Zeiss (Oberkochen, Germany), cou-
pled with an Ultim Max 40 energy-dispersive X-ray
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Figure 1 a Scheme of the fabrication procedure of hemp/PVP-
silica bilayer (H-2PVP) and multilayer (H-10PVP) materials;
b photographs of H-10PVP and H-as10PVP samples; ¢ SEM

(EDX) micro-analyzer (Oxford Instruments, High
Wycombe, UK).

The thermal behavior of H-10PVP was studied by
thermogravimetric analysis (TGA), using a simultane-
ous thermoanalyser SDT Q600 (TA Instruments, New
Castle, DE, USA) under N, and air with a gas flow of
100 mL/min, in the temperature range 25-800 °C at a
heating rate of 10 °C/min.

The flammability of the multilayer material was
investigated, like in the case of polymer-based com-
posites, using the Underwriters Laboratories 94
(UL 94) vertical burning test, following the ASTM
D3801 standard. The size of the test specimens was
125 x 13 x 3 mm? and the burning test was repeated
until five consecutive readings.

Burn-through tests were performed on bare hemp
and H-10PVP to evaluate their resistance toward the
frontal application of a flame. A small-scale butane
burner apparatus (Cadrim, China) was used to carry
out the tests. The flame temperature was about 1200 °C
and the generated front heat flux was around 170 kW/
m?. The temperatures at the backside of the specimens
(10 x 10 cm?) and related burn-through time and igni-
tion time were monitored by an InfraRed camera
Thermo Gear G100/G120 (NEC Avio Infrared Tech-
nologies Co., Tokyo, Japan). Details about the experi-
mental setup and procedure are described in Figure 51
and in a previous work [48].
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image, ATR-FTIR spectrum and EDX elemental analysis results
for H-10PVP; d SEM image, ATR-FTIR spectrum and EDX
results for H-10PVP after laundry cycles.

The fire behavior of bare hemp and multilayer blan-
kets was evaluated by a cone calorimeter (Noselab
ATS, Monza, Italy), operating with an irradiative heat
flux of 35 kW/m? (ISO 5660 standard). The cone calo-
rimetry tests were performed on 10 x 10 cm? specimens
to determine the time to ignition (TTL s), time to flame
out (TTFO, s), total heat release (THR, MJ/m?), heat
release rate (HRR, kW/m?), peak of the heat release
rate (pkHRR, kW/m?), total smoke release (TSR, m?/
m?), specific extinction area (SEA, mz/kg), carbon mon-
oxide and carbon dioxide yields (kg/kg).

The tensile properties of the hemp fabric and
H-10PVP were evaluated using an Instron Mod. 4505
dynamometer. Specifically, three rectangular strips for
each type of sample, having a width of 30 mm and
preliminarily conditioned at room temperature and
50% relative humidity for 2 days in a climatic chamber,
were tested by setting a crosshead speed of 2 mm/min.

Machine learning modelling and design
strategy

Cone calorimetry test is useful to deeply investi-
gate the fire behavior of a flame retardant polymeric
material. It is a disruptive test, which normally
needs three specimens to provide reliable results.
This forced-combustion test is performed in air
atmosphere and the flaming combustion of volatiles,
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generated by heat radiation, is triggered through a
spark igniter. Among the possible fire parameters
(see Sect. "Thermal and fire performances of the
multilayer material"), which can be measured by
cone calorimetry tests, TTI and pkHRR are particu-
larly useful for fire scientists to study the effect of a
specific flame retardant on a polymer-based mate-
rial. These two parameters can also be evaluated by
additive molar group contributions; however, both
methods are time-consuming [49, 50]. Besides, the
forced-combustion test is not only a disruptive meas-
urement, but it also requires an expensive apparatus
that is frequently not available in many research lab-
oratories and companies. Recently, as an alternative
to these approaches, some works have demonstrated
that machine learning models enable the prediction
of cone calorimetry parameters of many polymeric
systems [42]. The application of machine learning
(ML) models allows to avoid the use of time-consum-
ing procedures and expensive instruments, reducing
the number of measurements, and the loss of mate-
rial during the screening operations in the design of
experiments. However, in the prediction of materi-
als” physico-chemical properties by machine learn-
ing, the lack of complete and large datasets is one
of the major drawbacks. Most of the available and
suitable datasets in the literature are characterized
by a large presence of missing values, which makes
it difficult to train efficient models [51].

Herein, by the application of KNIME, an open-
source software for managing data science [52], we
employed different machine learning models (i.e.,
artificial neural networks and decision trees) to pre-
dict the TTI and the pkHRR of the multilayer material
(H-10PVP) from its weight per unit area, cone calorim-
etry parameters, TGA data, and vertical flame spread
test results (see the input dataset in Table S1). The
input parameters (IPs) for the models, together with
their symbols and meanings, are listed in the rows
and columns of Table S1. More in detail, the columns
of the IPs are weights per unit area, cone calorimetry
parameters, TGA data, and vertical flame spread test
results of functionalized and neat textile materials (see
column of references in Table S1), whose experimen-
tal values were found in the literature [53], including
hemp, i.e., the material selected for this research work.
H was taken into account to complete the input data-
set, as it represents the true reference and counterpart
of H-10PVP, therefore it is crucial to keep a high accu-
racy for the models.
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The four stages performed in this study for the pre-
diction of the cone calorimetry data (TTI and pkHRR)
related to H-10PVP are reported in the workflow of
Fig. 2. In the first stage, as above mentioned, the IPs
dataset, for the machine learning models, is built by
using laboratory measurements (see following sec-
tions), in the case of H and H-10PVP, and data found
in the literature for the other textile materials. The
second stage involves the execution of data pre-pro-
cessing operations by generative model ChatGPT. As
reported in Table S1, the IPs dataset shows some miss-
ing values; this aspect may reduce the predictive capa-
bility of the ML models. Considering the data distribu-
tion and statistical analysis, ChatGPT was employed
to enhance the starting IPs dataset by replacing each
missing value with the most suitable statistical indi-
cator (i.e.,, mean, median or mode). In particular, the
GPT-4 model was chosen among the various models
provided by OpenAl, given its ability to take in input
and process excel files, in which our data were stored.
Before running ChatGPT, textile materials in Table S1
were grouped based on their chemical-physical simi-
larity and a specific number (see “SAMPLE ID” col-
umn) was associated to each cluster. This preliminary
clustering operation allows to (i) estimate more repre-
sentative statistical indicators, as ChatGPT can work
separately on small portions of data rather than on the
whole dataset, and (ii) apply stratified sampling dur-
ing model training, so training and validation datasets
will have a similar number of samples for each group.
To prevent negative effects along the training of the
models, the new IPs dataset (Table S2), containing the
statistical indicators found by ChatGPT, was further
modified through the removal of nine rows and one
column, as their missing values could not be obtained
with the generative model. After this cleaning opera-
tion, the resulting IPs dataset (Table S3) was used (see
Fig. 2) to determine the best regression models to be
applied on the available data. Due to the low number
of data, the input dataset was not submitted to features
selection techniques (e.g., principal component analy-
sis). Also, the data were not normalized to prevent any
change of scale altering the significance of the param-
eters (i.e., chemical-physical properties of the textiles)
and negatively influencing the training of the artifi-
cial neural networks (ANNSs). There are several tools
that can be employed to improve the quality of very
wide input dataset, for example the methods based
on cooperative game theories (e.g., Shapley Additive
Explanations). These methods allow for increasing
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Figure 2 Workflow reporting the four stages used to predict TTI (s) and pkHRR (kW/m?) values.

transparency and interpretability of machine learn-
ing models, revealing the influence of each feature
on the model’s output and thus making possible the
development of more accurate and reliable prediction
algorithms [30].

ChatGPT could recommend two different types of
ML models for the prediction of our parameters: an
ANN model enhanced with a K-Nearest Neighbors
(K-NN) algorithm performing a local weighted regres-
sion (LWL), and a Gradient Boosted Trees (GBTs)
model, which is a particular ensemble of decision tree.
In the third stage, ANN and GBTs models are applied
to the IPs dataset and trained by the data science soft-
ware KNIME. To achieve the best overall performance,
optimization methodologies were also carried out to
properly tune the hyperparameters of the models
based on the validation data. Finally, in the fourth
stage, the predictions provided by the regression
models were collected and compared with the actual
values of multilayer’s parameters (TTI and pkHRR),
experimentally measured in laboratory (Sect. "Ther-
mal and fire performances of the multilayer material").

By comparing the actual values with the predicted
ones, the Mean Absolute Percentage Error (MAPE)
of each model was evaluated to identify the one giv-
ing the best results. The estimation of MAPE for a
regression model allows to quantify its effectiveness
and reliability by Eq. 1, where N is the number of
observations:

1 - |Actual value; — Forecasted value;|
MAPE (%) =100x = Y
N i=1

Actual value;

@
MAPE is largely used in the field of regression anal-
ysis as percentage errors represent very intuitive indi-
cators to understand model performances [54]. Table 1
displays an indicative outline to evaluate the goodness

of a model based on the resulting MAPE value [55].
In view of the above, it is worth noticing that there
is a strict interaction among the selected, designed,
produced, and experimentally characterized mul-
tilayer material, ChatGPT, and the developed ML
models. In fact, ChatGPT is fed by the input dataset,
characterized by the presence of missing values, of

@ Springer



1026

Table 1 Assessment and evaluation of prediction effectiveness
by the interpretation of Mean Absolute Percentage Error (MAPE)

MAPE Interpretation

<10 Highly accurate forecasting
10-20 Good forecasting

20-50 Reasonable forecasting
>50 Inaccurate forecasting

properties related to both the investigated multilayer
and other materials that fall into the same class. The
input dataset of properties is implemented by Chat-
GPT that finds suitable statistical indicators for com-
pleting the raw dataset. Once completed, the dataset
is exploited for developing the ML models. Finally,
the prediction of the parameters is compared with the
actual values (i.e., those experimentally estimated).

Results and discussion

Manufacturing and chemical characterization
of the multilayer material

The preparation of the multilayer material was
designed based on the surface charge of the compo-
nents at specific pH values so that the adhesion of
PVP-silica blankets on the hemp rugs was promoted
by electrostatic interaction. In the presence of charge-
determining ions, the nature of a metal or metalloid
(M) atom and the acidity of M-OH groups on the
surface of inorganic nanoparticles directly influences
their surface charge [56, 57]. The point of zero charge
(PZC) represents the pH, at which the surface is not
charged: therefore, at pH <PZC the surface is posi-
tively charged, whereas at pH >PZC it is negatively
charged [56, 58]. As demonstrated in some previous
works, the surface of the PVP-silica blanket is prac-
tically composed of silica, full of silanol groups [56,
58]. This finding is confirmed by the FTIR spectrum of
PVP-silica (Figure S2), dominated by the intense vibra-
tional band due to Si-O stretching at about 1090 cm™,
with the bands at lower wavenumbers assigned to the
stretching of Si-OH bonds (796 cm™!) and the bending
of Si~O-Si groups (584 cm™). As the PZC of silica is
about 2.0, at pH 2.5 its surface is expected to exhibit
a negative charge, while hemp should be character-
ized by a positive charge, having a PZC around 6 [59].
A bilayered sample (H-2PVP) was obtained by the
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deposition of one PVP-silica blanket on each side of
the hemp blanket, as described in Sect. "Manufactur-
ing of the multilayer material" and Fig. 1A.

Unlike PVP-silica alone, which achieved self-extinc-
tion [21], H-2PVP was not self-extinguishing during
vertical flame spread test. For this reason, H-2PVP was
further coated by 4 layers of PVP-silica blankets on
each side to achieve self-extinction and V0 flammabil-
ity class (see Sect. "Mechanical robustness and flamma-
bility behavior of the multilayer material"). Similarly
to silica nanoparticles in the PVP fibers, commercial
titanium oxide particles are rich in surface hydroxyl
groups, as proved by the FTIR spectrum showed in
Figure S2. Due to the different acidic characters of
Si-OH and Ti—OH groups, the PZC of titanium diox-
ide is higher than that of silica (around 6) [57, 60, 61].
Therefore, at pH 5, the TiO, nanoparticles should be
positively charged and thus encouraged to match
the negatively charged silica particles and establish
a cross-condensation. Owing to this straightforward
manufacturing procedure, it is likely to expect strong
interactions between the components of H-10PVP mul-
tilayer blanket, which appeared compact and uniform,
as well as flexible (Fig. 1B).

The SEM images of H-10PVP (Fig. 1C) show the
typical morphology of nonwoven electrospun fibers,
with a multimodal diameter distribution, as previ-
ously reported [21, 57] and a rough surface revealing
the embedded SiO, nanoparticles. The surface chem-
istry of the multilayer was investigated by ATR-FTIR
spectroscopy and EDX analysis. The FTIR spectrum
of H-10PVP confirms that hemp is thoroughly cov-
ered by the fiber mats, since it closely resembles that
of bare mats (see Figure 52), showing the abovemen-
tioned bands due to silica and the bands between 1700
and 1300 cm ™! ascribed to PVP. The EDX elemental
distribution, reported in the inset of Fig. 1C, agrees
with the approximate composition of the hybrid fibers
and reveals also the presence of TiO,, which is hardly
detectable by FTIR because of its low concentration.

To additionally prove the good adhesion of each
layer in H-10PVP, the stability of PVP-silica blankets
in a polar solvent, and the firm anchoring of titanium
dioxide nanoparticles to the surface, the multilayer
material underwent washing fastness tests. From the
photograph, SEM image, and EDX data of the blankets
after washing (Fig. 1D) it is possible to observe that
the morphology and surface chemistry of the sample
appear practically unmodified, as further confirmed
by the FTIR spectrum (Fig. 1D), which is virtually
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identical to that of the as-prepared sample. These
results confirm the resistance of the multilayer mate-
rial to repeated washing cycles.

Mechanical robustness and flammability
behavior of the multilayer material

Unlike H-as10PVP which resembled wadding,
H-10PVP exhibited notable mechanical strength and
tensile response (see Sect. "Tensile behavior of the
multilayer material"), stretchability, and structural
compactness (see Fig. 1B). To prove these characteris-
tics, H-10PVP (10 x 10 x 0.3 cm®) was fixed at a metallic
support and some glass marbles (total weight: 44.6 g)
were placed on it. The sample did not break (Video 1),
throughout the whole test, while H-as10PVP imme-
diately lost its structural integrity after a few seconds
(Video 2).

As previously mentioned, the procedure for the
multilayer material preparation was continued up
to the deposition of 5 double layers of PVP-silica
because H-10PVP was found to exhibit VO rate dur-
ing vertical flame spread tests. More in detail, the
sample (1.3 x12.5x 0.3 cm®) captured the flame but
this latter could not propagate along the sample, due
to the formation of a ceramic and continuous carbo-
naceous residue, during the first combustion stages.
Therefore, the flame immediately extinguished after
its application, also resulting in the production of an
almost inappreciable amount of smoke. Besides, it
is worth mentioning that H-10PVP still showed its
good mechanical behavior and structural compact-
ness after the flammability test, which is likely due
to the hemp layer remained practically undamaged
after the flame exposure, thanks to the effective heat
shielding effect exerted by the PVP-silica fibers (see
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material"). The negligible release
of smoke and the absence of any dripping phenom-
ena make this multilayer material a promising smoke
suppressant textile, showing the consistency of the
easily flammable and not classifiable (according to
UL 94 vertical flame spread test) hemp rugs, in terms
of mechanical strength, and the very low flammabil-
ity of the nonwoven PVP-silica blankets. By using a
configuration similar to that adopted for testing the
mechanical strength of H-10PVP, the robustness of
the multilayer material was also evaluated through
the application of a gas lighter’s flame to its sur-
face, while the back side was sustaining a load (glass
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marbles of total weight =44.6 g). Video 3 shows that
H-10PVP does not capture the flame and the material
preserves its structural integrity throughout the whole
test, holding the load without any detrimental effect
on its mechanical behavior. Besides, it is worth high-
lighting that after this test, H-10PVP also preserves
its stretchability (Video 4) and mechanical strength,
which means that the hemp layer probably undergoes
only slight damage.

To investigate the burn-through resistance of the
multilayer material, H-10PVP (10 x 10 x 0.3 cm® panel)
was firmly fixed in vertical position (see Figure S1)
and the flame of a butane gas blowpipe was directed
perpendicular to the surface of the specimen, at an
adequate distance to let the flame tip brush its mid-
dle. An IR camera was employed to record the back
temperature (Tp) profile at the sample surface during
the burn-through test. Burn-Through time (BTT) indi-
cates the time, at which the material loses its struc-
tural integrity. It was possible to observe that during
the flame application, an abundant amount of a white
ceramic char forms, while the PVP layers undergo a
fast decomposition (Video 5). As shown in Fig. 3A, H
captures the flame after only 3 s (Ty =140 °C), while
H-10PVP requires around 21 s, revealing a very low
surface flammability. Moving from the TTI point,
the Ty of H-10PVP changes very slowly compared
to that of H, probably due to the ceramic insulating
char that slows down the heat exchange at the bound-
ary layer and acts as a thermal barrier (Fig. 3B). Con-
cerning H-10PVP, when the first PVP layers are fully
degraded, the flaming combustion stops and the char
starts its additional function of fire shield, protecting
the underlying material, even at very high tempera-
tures (> 600 °C). After almost 1 min (T =705 °C) of
flame application, H-10PVP still appears structurally
intact. The flame does not burn through the sample:
indeed, its back surface is free of holes and only mar-
ginally burned. Conversely, the hemp sample gives a
BTT of around 18 s (Tg =594 °C), which further under-
lines the low surface flammability and high burn-
through resistance of H-10PVP.

Thermal and fire performances
of the multilayer material

To investigate the thermal decomposition profile of
the multilayer material, thermogravimetric analysis
was performed under nitrogen and air atmosphere
(Table 2). The same measurements were carried out
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Figure 3 Results of the burn-through test on hemp and H-10PVP multilayer sample: a Back temperature of the sample as a function of
time; b IR camera images taken at different times, with the indication of the TTI and BTT.

Table 2 Thermal data

evaluated from TGA curves Sample T 09 (°C) Tnaxt CC) T a2 CC) Residue (wt.%) at
of all samples in N, and Tonaxi Trnax2 800 °C
air. rfl{orfl ils the t;rrllpera}ture, Nitrogen
at which 10 wt.% loss is PVP-silica 240 369 - 74 - 47
recorded. T, and Tma}xz are H 185 358 _ 45 _ 12
the temperatures, at which

. H-10PVP 303 340 - 69 - 34
the weight loss rate reaches ]
the maximum; the residues at Air -
Tmaxl and TmaxZ’ and 800 °C PVP-silica 287 331 512 78 52 44
are also reported H 270 340 398 54 10 0

H-10PVP 247 362 572 76 56 45

on PVP-silica and hemp to study the main differences
with H-10PVP. The presence of hemp in the multilayer
materials results in a beneficial effect on the pyrolysis
of H-10PVP, as it starts to decompose at higher T,
compared to PVP-silica. On the other side, H-10PVP
is also made of PVP-silica blankets, which are full of
silica and titanium dioxide nanoparticles, both causing
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an anticipation of T, and a significant increase in
the residual char at 800 °C, compared to hemp. Both
the inorganic species show weak acidic characteris-
tics promoting the dehydration of the polymer matrix
and its charring behavior. Therefore, the ceramic
char formed from the decomposition of H-10PVP,
especially its first layers, lower the heat exchange at
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Figure 4 a Heat release rate (HRR) curves for hemp and H10-
PVP from cone calorimetry tests; b SEM images, FTIR spec-
tra and EDX elemental analysis data of char samples collected
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in two different spots of the H10-PVP after burn-through tests
(CHAR 1 and CHAR 2); C Schematic representation of the flame
retardant mechanism occurring in the multilayer material.

Table 3 Results from cone calorimetry tests for the investigated samples

Sample TTI(s) TTFO(s) THR(MJ/m?)  ATHR (%) HRR (kW/m?» AHRR (%) pkHRR  Residue (Wt.%)
(kW/m?)

H 18 47 2.2 - 15.7 - 98.2 1.1

H-10PVP 22 96 44 +50 23.1 +47 84.0 34.8

TTI=Time To Ignition, TTFO=Time To Flame Out, THR =Total Heat Release, HRR =Heat Release Rate, pkHRR =peak of Heat

Release Rate

the boundary phase and act as thermal shield for the
underlying material during the pyrolysis [21, 62]. In
air atmosphere, the presence of acidic inorganic par-
ticles in H-10PVP leads to the lowest T;q,; however,
silica and titanium dioxide nanoparticles also boost
the barrier effect of char toward the oxygen diffusion,
shifting the main mass losses to higher temperatures
and allowing for a residual mass at 800 °C comparable
to that of PVP-silica, attesting a protective effect on the
hemp substrate (Table 2).

Given the above, the combined use of PVP-silica
blankets, titanium dioxide nanoparticles, and hemp
in manufacturing the multilayer material concurs to
obtain a product with good overall thermal stability.

To shed light on the flame retardant mechanisms
taking place during the combustion of H-10PVP, its

Table 4 Smoke parameters from cone calorimetry tests for the
investigated samples

Sample TSR (m2/ ATSR SEA ASEA CO/CO,
m?) (%) (m%kg) (%)

H 33.3 — 233 — 0.06

H-10PVP 49 -85 37 -84 0.11

TSR =Total Smoke Release, SEA = Specific Extension Area

fire behavior was studied, in comparison to that of
hemp alone, through forced-combustion tests by
cone calorimetry. Figure 4A and Tables 3 and 4 show
that the deposition of PVP-silica blankets on hemp
completely changes its fire performance. The com-
bustion of H-10PVP starts with the decomposition of
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PVP, which is a well-known easily flammable poly-
mer [21, 63], and it is followed by the formation of
a ceramic layer that protects the underlying part of
the sample from further degradation [64, 65]. Prob-
ably, the largest amount of hemp is allocated in this
underlying part, which is only poorly influenced by
the combustion process, due to the ceramic layer act-
ing as an efficient barrier toward both heat and oxy-
gen diffusion. Considering the multilayer material,
silica nanoparticles compose the skeleton of PVP fib-
ers, as demonstrated in a previous work [57], and its
surface is characterized by the presence of titanium
dioxide nanoparticles. Both these aspects account
for an increase of the time to ignition of H-10PVP
compared to the one of H (Table 3). In the case of
H-10PVP, the release of combustible gases and heat
propagation are significantly hindered by the inor-
ganic species, which are intimately bonded to the
polymer matrix. As shown in Fig. 4A and Table 3,
during the combustion of the multilayer material,
the heat is released over a longer time, which may
be beneficial in all the applications where H-10PVP
is employed as a passive fire protection component.

Unlike H, the combustion of H-10PVP causes
the production of a huge amount of residual char
(Table 3), likely ascribed to (1) the acidic characters
of 5i-OH and Ti-OH groups promoting the dehydra-
tion of the PVP matrix and its carbonatization, and
(2) the formation of inorganic polymeric substruc-
tures, containing silicon- and titanium-based moie-
ties, able to boost the thermal shielding action of the
carbonaceous material [65, 66]. The peculiar chemi-
cal composition of H-10PVP allows for the occur-
rence of the above flame retardant mechanisms in
both condensed and gas phases during the combus-
tion, as also supported by the slight increase in CO/
CO, (Table 4), which are responsible for the different
flame retardant features of the multilayer material
compared to hemp.

This flame retardant action enables H-10PVP to
work as an outstanding smoke suppressant, as it
shows a remarkable decrease of both TSR (85%) and
SEA (84%), compared to H. The inorganic nanostruc-
tures do not affect only the time to ignition but also the
total smoke release, as the inorganic polymeric sub-
structures in the residual char contribute to reducing
the release of combustible volatiles, the diffusion of
oxygen, and the production of smoke gases (e.g., phe-
nol, cresol, carbon dioxide, naphthalene, anthracene)
during the combustion of the multilayer material [66].
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To further investigate the phenomena taking place
in the condensed phase, the residual char obtained
from the combustion of H-10PVP, submitted to the
flame of a small-scale butane burner (see Sect. "Ther-
mal and fire performances of the multilayer mate-
rial"), was deeply studied by ATR-FTIR and SEM-EDX
analysis (Fig. 4B). Figure 4B gives a complete over-
view of the chemical compositions and morphologies
related to different portions (CHAR 1 and CHAR 2)
of char arising from the tested sample. Both CHAR 1
and CHAR 2 show the same functional groups of the
unburned sample, also confirming a significant reten-
tion of silicon and titanium after the combustion. The
amount of silicon and titanium progressively increases
moving from CHAR 1 to CHAR 2, while the content
of carbon strongly decreases, especially in comparison
with the elemental composition of the unburned mate-
rial. It is worth mentioning that the EDX analysis does
not detect the presence of carbon in the case of CHAR
2 (Fig. 4B), as it forms in the region where the flame
is applied during the burning test, causing the gen-
eration of a compact and continuous ceramic shield
made of inorganic polymer substructures (i.e., Si-O-Ti
moieties). From a morphological point of view, Fig. 4B
provides clear evidence that the PVP-silica fibers are
still present in CHAR 1 and CHAR 2, though the ones
in CHAR 2 are most likely composed of inorganic
polymers rising from cross-condensed substructures
(Fig. 4C). This ceramic char looks so effective in pro-
tecting the underlying material that it is possible to
observe some residual hemp with its characteristic
texture: this finding may explain the good mechani-
cal properties of H-10PVP, even during the application
of a flame (see Sect. "Mechanical robustness and flam-
mability behavior of the multilayer material"). Finally,
the ATR-FTIR spectra of CHAR 1 and CHAR 2 reveal
the appearance of a strong band at 1577 cm™! related
to the C=C stretching vibration highlighting a sig-
nificant carbonization via dehydration of PVP matrix
promoted by the acidic Si-OH and Ti-OH groups. All
these results further confirm a strong flame retardant
action in the condensed phase and shed some light on
the features that enable this multilayer material to act
as an effective smoke suppressant. It should be noted
that these performances were achieved through the
use of silica and titania nanoparticles, without any hal-
ogenated, epoxy, or aromatic components, i.e., poten-
tially toxic and endocrine-disrupting compounds con-
tained in many polymeric materials [67, 68]. Hence,
in the disposal or recycling of the product at the end
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of life, no harmful substances would be released into
the environment. This multilayer material, obtained
by a sustainable and simple route, represents a viable
option to employ self-extinguishing nonwoven PVP
fibers as fire protection component in combination
with an easy flammable hemp-based product as rein-
forcement filler.

Tensile behavior of the multilayer material

To study the tensile response of hemp and to further
support the mechanical robustness of the multilayer
material (see Sect. "Mechanical robustness and flam-
mability behavior of the multilayer material"), their
stress—strain curves were collected (Figures 53 and
54). In agreement with previous works [69], after an
initial stage of structural readjustment of the fabric
meshes, the specimen stiffens for strains beyond 5%.
This results in a steeper stress increase up to a maxi-
mum value of about 55 MPa, followed by failure of
the fabric due to its further elongation that causes
progressive tearing. The slope of the steepest section
of the stress—strain curve, essentially representative of
the specimen’s stiffness, evaluated by a linear fitting,
was approximately 600 MPa. Regarding the multilayer
sample, the specimens appeared more delicate due to
the presence of the electrospun PVP-silica nonwo-
ven coating. Thus, special care was paid during the
clamping of the specimens to avoid their premature
damage, and the mechanical response was quite differ-
ent. In particular, as clearly shown by the trend of the
stress—strain curve presented in Figure 54, the tensile
strength, again negligible for strains lower than 15%,
shows a non-monotonic trend with a first increase up
to about 2 MPa, followed by a partial yielding and a
second increase until reaching a maximum stress of
about 5.5 MPa. For further elongations, a noisy trend
of the curve is observed, essentially due to a marked
cleavage of the coating layers and tears in the inter-
nal fabric layer. In other words, the multilayer sam-
ple (H-10PVP) shows a mechanical response typical
of materials that undergo delamination effects before
catastrophic failure under load. Moreover, even in this
case, it is possible to estimate the stiffness of layers of
electrospun PVP and internal hemp fabric by evalu-
ating the slopes of the two increasing stress sections
(see fitting lines drawn in Figure 54). The results pro-
vided stiffness values approximately equal to 30 MPa
and 50 MPa, respectively, i.e., one order of magnitude
lower than the hemp fabric alone. This adverse effect,
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combined with a significant reduction in the maxi-
mum bearable stress, can be ascribed to the structural
modifications undergone by the hemp fibres during
the preparation phase of the multilayer sample and it
is partly predictable given the enhanced wetting state
of the hemp fabric resulting from the tested samples.
However, these results from the tensile tests well
agree with the qualitative observations concerning the
mechanical robustness of the multilayer material (see
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material" and Video 1).

Prediction of time to ignition, total heat release
and peak of heat release rate of the multilayer
material

Application of the artificial neural network

Artificial neural networks (ANNSs) are machine learn-
ing models largely employed for classification and
regression in various application fields [31]. Like our
brain, these networks are based on large collections of
neurons linked by axons. In an artificial setup, neurons
are replaced by neural units establishing connections
to form a network. The strength of these connections
can be either increased or decreased using a particular
activation function, determining the neuron’s output
[31]. In a few words, ANNSs represent complex non-
linear mathematical models able to convert a set of
independent variables x = (xy, ..., X,,), referred to as net-
work inputs into dependent variables y = (yy, ..., yy),
which are the network’s outputs. The outcomes pro-
duced by the network are influenced by a collection
of parameters w = (wy, ..., w,), also known as weights.
Equation 2 describes the way the network’s outputs
are derived from inputs:

y=f Zw]-*xj+b ()
j

where: x; is the jth input, w; is the jth weight, b is the
bias, y is the output, and fis the activation function.
In the training stage of an ANN, neurons collect
data and then store them in weights and biases to be
used later in the prediction stage. The activation func-
tion, denoted as f, typically acts as a threshold func-
tion, triggering only the neurons matching the thresh-
old criteria, and responsible for moving the signal to
subsequent neurons. Sigmoid, nonlinear stepped, or
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logistic functions are examples of activation functions.
The training process involves an iterative procedure
(i.e., backpropagation), which allows to appropriately
adjust weights based on the input data. The final objec-
tive of this phase relies on finding the weight values
able to reduce a specific error function. A backpropa-
gation ANN algorithm may be optimized by different
approaches, for example using the Bayesian regulari-
zation, which makes possible the development of a
model with more efficient generalization capability
[44]. An ANN is generally composed of three sections
with varying numbers of neurons: one input layer,
multiple hidden layers, and one output layer. Within
these internal layers, the input signals are transmitted
from the input to the output layer, as shown in Fig. 5A.
One of the models developed in this research work is
a fully connected feed-forward artificial neural net-
work based on a multilayer perceptron. Particularly,
two different feed-forward ANNs were implemented,
one for each parameter to be predicted. The model’s
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Figure 5 a Generic representation of an Artificial Neural Net-
work (ANN) with three layers. b ANN models developed for the
prediction of the TTI and pkHRR parameters. More in detail:
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architecture and the layout of each layer are reported
in Fig. 5B, showing both the ANNs. The structure
mainly consists of one input layer with 15 variables,
one hidden layer with 8 neurons (i.e., half plus one the
neurons in the input layer), and one output layer with
1 neuron, returning the predicted parameter value of
a specific textile material.

To predict the values of TTI and pkHRR for
H-10PVP material, the networks perform a locally
weighted regression through a K-NN algorithm. This
supervised machine learning technique is used to
weigh the training data based on their proximity to the
new data, as each training data point receives a weight
that is inversely related to its distance from the new
data point (as shown in Figure S5). Therefore, dur-
ing the regression process, the classifier prioritizes the
local data (i.e., the training data within the K-regions
closest to the new data), improving the accuracy of
the predictions compared to the traditional regression
methods [70].
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wt.% losses in air (Air) and nitrogen (N,) were recorded, T,
and T, are the temperatures, at which the weight loss rate
reached maximum, TGA residues indicate the residual masses at
T>600 °C, Total Burning Time (VFST) and Total Burning Rate
(VFST) and the Residue (VFST) were measured during and after
the vertical flame spread test (VEST), TTI is the time to ignition,
THR is the total heat release.
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In the training phase, MAPE was used as an indica-
tor for the process related to the tuning of hyperpa-
rameters, providing the model’s error for a particular
combination. The minimization of this error involved
the use of a “Parameter Optimization Loop (POL)”
node. POL node was employed to find the best combi-
nation of hyperparameters (such as the “K” parameter
of K-NN algorithm and the internal hyperparameters
of the ANN), able to minimize the global error result-
ing from the application of locally weighted regression
on each subset of the input dataset (extracted through
the “X-Partitioner” node). We also used a hill-climbing
search method to find the best combination of hyper-
parameters [71]. The following optimal values were
found by this methodology:

e K=3, learning rate equal to 0.001, momentum equal
to 0.1 and number of epochs equal to 7300 for the
prediction of TTI parameter;

e K=2, learning rate equal to 0.005, momentum equal
to 0.1 number of epochs equal to 8000 for the pre-
diction of pkHRR parameter.

Then, the validation of the hyperparameters (the
ones found using the optimization loop) was carried
out by splitting the input data (Table S3) into two sub-
sets: training set (Table 54, 70% of the input data) and
validation set (Table S5, 30% of the input data). The
validation dataset was used not only to perform the
predictions but also to compare the predicted param-
eters with the actual values. The predicted values of
TTI and pkHRR for H-10PVP sample from ANN mod-
els, applied on the whole input dataset (Table S3), are
collected in Table 5, together with the MAPE values
associated with the chosen hyperparameters. The
predicted values were extracted through KNIME’s
“Numeric Scorer” node. More specifically, based on
the validation data, MAPE was evaluated around 0.468
(= 47%) for the TTI parameter and 0.404 (= 40%) for
the pkHRR parameter (as shown in Table 5), proving

Table 5 Predicted values of TTI and PHHR for the multilayer
material (H-10PVP) resulting from the application of ANN mod-
els on the input dataset. MAPE values are the model’s errors,
estimated on the validation data, quantifying the effectiveness

that our algorithms are characterized by a “reason-
able” predictive capability (see Tables 1 and 5). The
KNIME workflow employed in this research to imple-
ment the ANN models is presented in Figure Sé.

APE values represent the errors measured on the
test dataset and thus they are not comparable with
the ones obtained from the validation dataset [54, 72].
This is especially true in cases where the test data-
set consists of only one example. Therefore, although
the APE values associated with the test dataset show
very low and promising values, it is still necessary to
consider the MAPE values evaluated on the validation
dataset to have an idea about the true capability of the
ANN models.

Application of decision trees and gradient-boosted trees

Among the machine learning tools, decision tree (DT)
models represent a versatile and valuable methodol-
ogy to address classification and regression challenges
[73]. The architecture of these models mimics the pro-
cess of human decision-making and thus decision
trees break down a complex decision into a series of
simple ones, facilitating the prediction of an output
variable. A DT consists of nodes and branches form-
ing a tree-like structure, where each node represents
a “decision” based on certain input features and the
branches represent the outcomes of these decisions
[74]. The final predictions are the leaves of the tree
and the nodes at the lowest level. The root of the tree
begins with the whole input dataset, which is then
split into subsets based on the values assumed by the
parameters. The goal of each step along the decision
tree is finding the best split, that is the one providing
the highest variance reduction for a specific node, as a
lower variance within nodes results in more accurate
predictions. The splitting of the input dataset contin-
ues and creates a hierarchy of nodes and branches
until the model meets some stopping criteria, such as

and the reliability of models. APE values represent the model’s
errors, evaluated on the test data and associated with the chosen
hyperparameters selected for the models

Parameter Actual value Predicted value MAPE APE
TTI (s) 22 19.12 0.468 (=47%) 0.203 (219%)
pkHRR (KW/m?) 84 118.189 0.404 (=40%) 0.299 (=217%)
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a maximum depth of the tree or a minimum number
of samples per leaf. In regression problems, decision
trees (also called “regression trees”) predict numerical
values by segmenting the “input space” into distinct
regions, where the prediction for each leaf is typically
determined by the average outcome of the training
instances within that region [75]. Figure 6 shows the
typical structure of a DT (Fig. 6A) and its capabil-
ity to separate the input space into different regions
(Fig. 6B).

Moreover, the working process of DTs inherently
makes this machine learning tool particularly indi-
cated for handling missing values, which is a com-
mon issue in real-world input datasets. This peculiar
feature of DTs allows to manage missing data without
requiring extensive preprocessing or replacing strate-
gies. This aspect is significantly advantageous, as the
integrity and the statistical distribution of the original
input dataset are preserved. Gradient Boosted Trees
(GBTs) enhance the predictive performance of DTs by
combining the results of multiple DTs models. More
in detail, the application of GBTs on an input dataset
leads to an ensemble, as each decision tree focuses
on reducing the error made by its predecessor, hence
improving the overall model’s performance. GBTs
methodology has proven its effectiveness in machine
learning challenges where the implementation of
a single DT cannot provide a satisfactory level of
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predictiveness [76]. GBTs are based on an optimization
algorithm, named “Gradient Descent”, involving the
minimization of a loss function, which quantifies the
difference between the predicted and actual outcomes
at each iteration [77]. The residual values of several
iteration steps represent the training dataset of a next
tree. This latter tries to fix the error (i.e., the difference
between the prediction of a current tree and the actual
target value) made by the previous one through the
prediction of its error. This iteration process allows
for improving the model’s predictiveness, as the trees
learn by doing (see Fig. 7).

The gradient descent process aims to get as close
as possible to the minimum of the loss function and
it repeats for a number of iterations until the error is
no longer significantly reduced. The gradient refers
to the direction where the next tree lowers the total
prediction error based on the previous predictions and
the gradient of the loss function. In other words, for
a given loss function L(y, F(x)), where x is the given
input, y is the actual outcome value and F(x) is the
predicted value given the input x, the loss function
quantifies how far off our predictions are from the
actual values. In regression tasks, common choices
for the L function are represented by mean squared
error and MAPE. The gradient of the loss function
points toward the direction where the loss function
increases more sharply. The gradient is considered
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Figure 6 a An example of decision tree and b the resulting input space subdivision.
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Figure 7 The building process of Gradient Boosted Trees (GBTs), starting from an input dataset.

with a negative sign, as the minimization of the loss
occurs in the opposite direction of the gradient. For a
given set of predictions F(x), the gradient of the loss
function with respect to these predictions at each point
x; is calculated as shown in Eq. 3:

_ oL Flx) 3
5= ok (x,) )
The equation gives back how to adjust the predic-
tions F (xi) to decrease the loss for each instance i. The
size of the steps taken in the gradient descent process
is controlled by a parameter known as “learning rate”,
which balances the speed of learning against the risk
of overfitting (i.e., the model overly adapts to the

training data and then fails on new data). The gradient
descent algorithm is graphically shown in Figure 57.
As for the ANN models, we trained two separated
GBTs models (one for each parameter to be predicted,
i.e., TTI and pkHRR) and measured the error using
MAPE as an indicator. To compare the outcomes
resulting from the two types of models (ANN and
GBTs), the tuning of the hyperparameters was per-
formed by employing the same procedure followed
in the case of the ANNSs (see Sect. "Application of the
artificial neural network"). Also, the same training
dataset and validation dataset (see Tables S4 and S5)
were considered for the application of GBTs models.
The hyperparameters of GBTs models are represented
by the number of trees, related to the ensemble, and
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the learning rate. The optimal values found for the
hyperparameters from the parameter optimization
loop are (1) the number of trees equal to 400 and (2)
the learning rate equal to 0.001, for the prediction of
both parameters. By using the whole input dataset
(see Table S3), the implementation of GBTs models on
validation data gives the predicted values (extracted
through KNIME’s “Numeric Scorer” node) of TTI
and pkHRR for H-10PVP sample listed in Table 6.
MAPE values, calculated on the validation data, are
0.431 (= 43%) and 0.336 (= 34%), respectively for the
TTI parameter and the pkHRR parameter. The lower
MAPE values compared to those resulting from the
application of ANNs prove that GBTs models are
the best choice for the prediction of TTI and pkHRR
belonging to the considered textile materials. Also, the
lower MAPE values (see Tables 1, 5, and 6) addition-
ally confirm that decision trees generally perform bet-
ter and are more reliable than ANNSs, when the input
datasets contain missing values. The KNIME work-
flow employed in this research to implement the GBTs
models is reported in Figure S8.

Overall, decisional trees significantly differ from
ANNSs. As above mentioned, ANNSs are composed of
different interconnected layers of neurons making the
prediction, while decisional trees are tree-like struc-
tures with nodes representing the decisions. The main
difference between the two models is the learning
approach. Indeed, ANNSs learn pattern through weight
and biases adjusted by backpropagation, while the
decision trees split the data on the basis feature con-
ditions to create branches. There are no possibilities to
identify, from the very beginning, the best performing
ML model. Indeed, as it shines through this research
work, the only possible way relies on the development
of the models and on the comparison of the predicted
data with the experimentally measured values (actual
values). Besides, there are other parameters that may
impact on the quality of the ML model, namely the
completeness of the database, its statistical significance

Table 6 Predicted values of TTI and pkHHR for the multilayer
material (H-10PVP) resulting from the application of GBTs mod-
els on the input dataset. MAPE values are the model’s errors,
estimated on the validation data, quantifying the effectiveness

J Mater Sci (2025) 60:1019-1040

and reliability, and the type of input parameters,
among others. In the present work, based on the
given boundary conditions (see Sect. "Machine learn-
ing modelling and design strategy"), decisional trees
must be preferred to ANNS, as they provide the lowest
values of model’s errors (MAPE and APE, Tables 5 and
6) and computational expense.

Conclusions

To overcome the poor mechanical behavior of electro-
spun-based materials and to widen their application in
advanced sectors, in this research work, we manufac-
tured a multilayer material (MM) based on thermally
treated PVP-silica based electrospun fibers, TiO, nano-
particles, and hemp, exploiting surface charge interac-
tions. An intensive washing in water of MM did not
affect its surface chemistry, morphology, and layer
adhesion. Unlike electrospun PVP-silica blankets, MM
showed high stretchability, satisfactory tensile behav-
ior, also carrying a load during the application of a
direct flame and showing an acceptable mechanical
behavior, as assessed through tensile tests. Compared
to the easily flammable hemp, the designed multilayer
material exhibited VO class in the UL 94 vertical burn-
ing tests, as well as slightly higher ignition time, and
85% lower total smoke release in forced-combustion
tests. The combustion of the MM resulted in the for-
mation of a ceramic and coherent residual char, slow-
ing down the diffusion of smoke gases and exerting a
hybrid flame retardant action in both condensed and
gas phases. Besides, this char acted as an excellent fire
shield, as it appeared impenetrable to the blowpipe
flame applied during the burn-through test of MM.
Finally, an artificial neural network was tested to
predict two important cone calorimetry parameters,
i.e., the Time to Ignition and peak of Heat Release
Rate, based on a dataset of physical, thermal, and
fire parameters of treated textiles. We demonstrated

and the reliability of models. APE values represent the model’s
errors, evaluated on the test data and associated with the chosen
hyperparameters selected for the models

Parameter Actual value Predicted value MAPE APE
TTI (s) 22 19.986 0.431 (=43%) 0.277 (228%)
pkHRR (KW/m?) 84 78.307 0.336 (=234%) 0.158 (= 16%)
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that the integration of ChatGPT to perform a data
enhancement and the implementation of well-
designed machine learning models, featuring Gra-
dient Boosted Trees, allow for a prediction with
satisfactory accuracy, evaluated by Absolute Per-
centage Errors, even in case of some missing input
data. The results of this research may pave the way
for the design of more sustainable flame retarded
functional multilayer materials based on electrospun
polymers and natural fibers, and the use of reliable
Al-assisted models that allow for the prediction of
materials parameters, hence saving time and experi-
mental efforts.
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