
Vol.:(0123456789)

Archives of Computational Methods in Engineering 
https://doi.org/10.1007/s11831-024-10200-9

REVIEW

Finite Element Model Updating for Material Model Calibration: 
A Review and Guide to Practice

Bin Chen1 · Bojan Starman2,3 · Miroslav Halilovič2 · Lars A. Berglund1 · Sam Coppieters3

Received: 31 July 2024 / Accepted: 17 October 2024 
© The Author(s) 2024

Abstract
Finite element model updating (FEMU) is an advanced inverse parameter identification method capable of identifying multi-
ple parameters in a material model through one or a few well-designed material tests. The method has become more mature 
thanks to the widespread use of full-field measurement techniques, such as digital image correlation. Proper application of 
FEMU requires extensive expertise. This paper offers a review of FEMU and a guide to practice. It also presents FEMU-
DIC, an open-source software package. We conclude by discussing the challenges and opportunities in this field with the 
intent of inspiring future research.

Abbreviations
FEA  Finite element analysis
FEM  Finite element method
VFM  Virtual field method
DIC  Digital image correlation
IDIC  Integrated DIC
IDVC  Integrated digital volume correlation
2D-DIC  Two-dimensional digital image correlation
Stereo-DIC  Stereo digital image correlation
DVC  Digital volume correlation
FE-DIC  Finite element based global digital image 

correlation
MF-DIC  Meshfree digital image correlation
PMMA  Polymethylmethacrylate
CEGM  Constitutive equation gap method
CTE  Coefficient of thermal expansion
ROI  Region of interest
POI  Point of interest
PSO  Particle swarm optimization
GA  Genetic algorithm

LM  Levenberg–Marquart
GN  Gauss–Newton
SQP  Sequential Quadratic Programming
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AI  Artificial intelligence
SENB  Single edge-notched beam
CZM  Cohesive zone model
WST  Wedge splitting test
BEM  Boundary element method
NM  Nelder–Mead
NOD  Notch opening displacement
SSD  Sum of square difference
IR  Infrared
SNR  Signal-to-noise ratio
ANN  Artificial neural network
MT  Material testing
FEMU  Finite element model updating
FEMU-F  FEMU that uses force-based cost function
FEMU-FN  FEMU that uses normalized force-based 

cost function
FEMU-U  FEMU using the cost function based on 

displacement field
FEMU-UN  FEMU using the cost function based on 

normalized displacement field
FEMU-�  FEMU using the cost function based on 

strain field
FEMU-�N  FEMU using the cost function based on 

normalized strain field
FEMU-UF  FEMU using the weighted cost function 

that combines displacement field and force 
information
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FEMU-�F  FEMU using the weighted cost func-
tion that combines strain field and force 
information

FEMU-UFN  FEMU using the weighted cost function 
that combines normalized displacement 
field and normalized force information

FEMU-�FN  FEMU using the weighted cost function 
that combines normalized strain field and 
normalized force information

FEMU-FR  FEMU that uses force-based cost function 
with parameter regularization term

FEMU-UR  FEMU using the cost function based on 
displacement field with parameter regulari-
zation term

FEMU-FLN  FEMU using the weighted cost function 
that combines normalized force and nor-
malized crack length information

FEMU-FCN  FEMU using the weighted cost func-
tion that combines normalized force and 
normalized notch opening displacement 
information

FEMU-UT  FEMU using the weighted cost function 
that combines displacement field and tem-
perature field information

FEMU-UFT  FEMU using the weighted cost function 
that combines displacement field, tempera-
ture field, and force information

SEM  Scanning electron microscope
DT  Digital twin
fps  Frame per second

List of Symbols (from Section 5)
NS  Number of load steps
t  Subscript indicating load step
EXP  Superscript denoting data from experimen-

tal measurement
FEA  Superscript denoting data from numerical 

simulation
NORM  Superscript denoting normalization term
F  Reaction force
�F  Standard deviation of force
�  Weight in the cost function
�NOD  Standard deviation of DIC-measured 
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L  Crack length
m  Subscript indicating the index of notch 

opening displacement data
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displacement data
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point in ROI
i  Subscript for the point index in ROI
u  Displacement

Std()  Standard deviation operation
max()  Find the maximum value
Mean()  Mean value operation
�  Strain
�  Unknown material parameter vector
k  Subscript of the parameter index in param-

eter vector
pk  k-th model parameter
�F  Weight to control the importance of force 

information in cost function
�fk

  Weight to control the importance of regu-
larization term fk in cost function

�min , �max  Smallest and largest eigenvalue of Hessian 
matrix, respectively

M  Number of unknown material parameters
Sk  First-order Sobol index
STk  Total Sobol index
NF  Calculation point number for force
NU  Calculation point number for displacement
NT  Number of data point for temperature in 

ROI
�T  Weight to control the importance of tem-

perature information in cost function
�U  Weight to control the importance of dis-

placement information in cost function
�  Normalization term in the sensitivity 

matrix
�k  Scalar indicator for sensitivity
�  Hessian matrix
�Q  Collinearity of the parameter sensitivity
q  Size of a subset of the parameter space
�̃q  Sensitivity matrix of the subset of the 
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Sk  First order Sobol indices
STk  Total Sobol indices
j  Superscript indicating the index of iteration 

number
�  The step size for gradient descent method
Δ  Increment of a parameter in optimization
∇  Differentiation operator
�  Jacobian matrix
�  Identity matrix
�  Damping factor in LM algorithm
l  Subscript denoting the index of the indi-

vidual contribution in the cost function
�  Machine precision
Δp

k
  All-zero parameter vector with k-th value 

being a small perturbation
�  Condition number
�  Cost function
� l  Individual contribution in cost function
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V   Variance
E  Expectation

1 Introduction

The possibilities offered by stress analysis through numeri-
cal methods [1] have fundamentally changed workflows in 
engineering design, material development, and mechanics 
research. The predictive accuracy of engineering simula-
tion is highly dependent on the accuracy of the adopted 
material model (or constitutive model) [2]. Hence, a major 
task is to identify parameters in a material model, which 
can be an elastic, hyperelastic, elasto-plastic, plastic, or 
fracture material model. The parameters of a material 
model need to be calibrated against experimental data 
[3]. The material model calibration is a typical inverse 
problem in experimental solid mechanics. The calibration 
process employs an inverse method that involves minimiz-
ing of the discrepancy between the experimental data and 
the analytical/numerical prediction by the material model. 
Pierron and Grédiac [4] classified the material parameter 
calibration techniques into 'Material Testing 1.0' (MT1.0) 
and 'Material Testing 2.0' (MT2.0) based on whether full-
field measurement is used.

MT1.0 encompasses the traditional ways to calibrate the 
material models. Figure 1a illustrates the MT1.0 approach 

in the scenario of calibrating an anisotropic yield func-
tion to characterize the plastic behavior of sheet metal [5]. 
MT1.0 generally calibrates the material models without 
full-field measurement information. It assumes a specific 
quasi-homogeneous strain and/or stress state in the sam-
ple. Thus, the strain can be measured by a strain gauge or 
an extensometer [6], while the stress state can be directly 
computed from the experimentally measured load. One 
or a few material model parameters can be estimated by 
fitting the material model to the obtained stress–strain 
curves.

Each MT1.0 test is designed to identify a very limited 
number of constitutive parameters under specific conditions, 
such as an uniaxial tensile or simple shear test. In MT1.0, 
the inverse problems for the calibration of advanced material 
models are often statically determinate. MT1.0 experiments 
are straightforward, accurate and standardized. However, 
multiple tests are required to fully calibrate advanced mate-
rial models that involve a large number of unknown model 
parameters. In this regard, MT1.0 is often perceived as the 
“poor relative of computational mechanics” [7].

Although MT1.0 remains extremely important for vali-
dating novel theories and material models, MT2.0 [4, 8] 
is emerging as a key approach in the development of digi-
tal tools for efficient material model calibration. MT2.0 is 
an alternative strategy in which the standard material test 
is substituted by a single complex experiment, thereby 

Fig. 1  Comparison between material testing 1.0 and material testing 2.0
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reducing the extensive experimental demands of MT1.0. It 
(see Fig. 1b) exposes the material to a variety of stress states 
simultaneously. Full-field measurement of the heterogene-
ous physical responses (such as displacement, strain, tem-
perature) offers the possibility to identify all parameters in 
very few tests. In such scenarios, an iterative inverse method 
based on full-field measurement information is required. An 
example of that is the calibration of an advanced plasticity 
model. In MT1.0, 17 tests at different stress states are needed 
to accurately calibrate the Yld2000-2d yield function fol-
lowing the state-of-the-art methods [9]. In MT2.0, the same 
yield function can be calibrated from just two experiments 
[10] that involve multiple stress states in each well-designed 
test. Another example is the calibration of heterogeneous 
materials such as welds [11]. MT1.0 calibrates only an aver-
aged behavior, while MT2.0 can, in principle, identify spa-
tially varied properties through one single test. Currently, 
MT2.0 methods are confined to research laboratories, for the 
most part, although further development could lead to their 
implementation in industry.

Several MT2.0 methods based on heterogenous kin-
ematic fields have been proposed. The following is a non-
exhaustive list of the most successful ones: Finite Element 
Model Updating (FEMU), Virtual Field Method (VFM) [7, 
12, 13], Constitutive Equation Gap Method (CEGM) [14], 
equilibrium gap method [15] and modified constitutive 
relation error method [16, 17]. Numerous studies [18–20] 
have explored and analyzed these methods in detail. The 
present review focuses only on FEMU due to its compa-
rably straightforward implementation, high versatility, and 
the widely available finite element analysis (FEA) software.

FEMU is a parameter identification method that itera-
tively updates the material parameters in a finite element 
model by minimizing the discrepancy between experimen-
tal measurement and numerical simulation. Figure 2 shows 
an overview of a basic FEMU framework. The process 
starts by conducting a complex mechanical experiment in 
a laboratory. The physical responses of the specimen, such 
as strain and temperature fields, are measured during the 
test. Afterwards, the same test is numerically simulated 

Fig. 2  Principle of classical 
FEMU
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using a suitable material model and initial material model 
parameters. The material model parameters in the numeri-
cal simulation are optimized by iteratively minimizing the 
discrepancy between the experimentally measured physical 
responses and their simulated counterparts. FEMU is pri-
marily used to identify in-plane material parameters from 
thin samples by assuming plane stress condition. It is also 
applicable to identify 3D material properties if rich out-of-
plane or 3D internal strain field information is available. 
Such displacement or strain information could be obtained 
by multi-view digital image correlation (DIC) or digital vol-
ume correlation (DVC).

FEMU is widely used in several research areas, such as 
geotechnical engineering, structural applications, and con-
stitutive material parameters identification. In geotechnical 
engineering, FEMU has been used widely but without using 
the same terminology [21–26]. The geomaterial parameters 
are calibrated by minimizing the difference between the 
experimental and simulated value of stresses, strains, void 
ratio, excess pore pressure, etc. In structural applications 
[27], FEMU identifies the structural parameters using the 
physical responses such as natural frequencies [28–30], 
mode shapes [31], displacements [32], strains [33]. In such 
areas, FEMU generally identifies the parameters of materials 
or structures without using full-field measurement informa-
tion [34]. This review focuses primarily on FEMU using 
full-field physical responses in the scenario of constitutive 
material parameters identification.

FEMU can function as a bridge between numerical simu-
lation and experiments (Fig. 3). Deep integration of experi-
ments and simulation is one of the goals in solid mechanics 
community. FEMU can contribute primarily in the following 
three aspects by making full use of the ability from experi-
ments and numerical simulation.

• Full exploitation of multi-physics experimental data: 
heterogeneous physical responses, such as strain fields 
and temperature fields, offer an abundance of experi-
mental data. By fully exploiting the rich data in FEMU 

we improve the capability and reliability in calibrating 
multiple parameters in a given material model.

• Efficient and accurate derivation of multi-physics mate-
rial parameters: FEMU can efficiently and accurately 
identify material parameters in diverse physical models, 
such as elastic, plastic and thermomechanical models. 
The material model could be both a physical model and 
a phenomenological material model. Here, the efficiency 
refers to the reduction in the amount of experimental 
measurements required.

• Material model discovery [35], selection [2, 36], and 
validation [37]: we can evaluate the difference between 
the experiments and the simulated responses based on 
the identified parameters. This difference helps us assess-
ing the selected model and therefore discover, select and 
validate material models.

1.1  Application Scope of FEMU

This review starts with an overview of the range of applica-
tions, scenarios, or areas where FEMU can be effectively 
applied. We conducted a comprehensive review focusing 
on the application of FEMU across several material fami-
lies, including metals, composites, polymers, biomaterials 
and ceramics. The associated material models are primar-
ily divided into plasticity, elasticity, hyperelasticity, vis-
coelasticity and fracture. The other material models have 
been excluded from the analysis due to being sparsely rep-
resented in the current FEMU studies. We collected around 
200 FEMU publications and found that in more than 100 
of them, the material families and the material models 
adopted are clearly reported. We reviewed these publica-
tions and compiled statistics on the problems investigated 
using FEMU. Figure 4 presents the publication ratio (the 
number of publications in a category divided by the total 
number of publications) with respect to different materials 
and mechanical properties.

Metals, such as steel [38–46], nodular graphite cast iron 
[47], aluminum and its alloys [36, 48, 49] and titanium 

Fig. 3  FEMU bridging experi-
ments and numerical simulation
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[50], account for almost half of the materials studied using 
FEMU. This can probably be attributed to the widespread 
use of metals in engineering design. They are predomi-
nantly modelled using phenomenological material models 
that are widely available in commercial FEA solvers. For 
metals, FEMU focuses primarily on the identification of the 
plastic material behavior. The reason is that these plastic 
properties are described by complex material models with 
multiple parameters. This task is very suitable for FEMU 
while being highly experimentally intensive for MT1.0. 
Additionally, plastic deformation typically leads to large 
strains, which yields a favorable signal-to-noise ratio in DIC 
measurements.

Composite materials, such as carbon/epoxy compos-
ite [51], 3D woven composite [52], glass/epoxy laminate 
[53–55], concrete [56, 57], transparent wood [58] and all-
lignocellulose composites [59], are the second most studied 
materials for FEMU. Their behavior is mostly orthotropic 
elastic, and their failure is less governed by plastic defor-
mation. The interest is therefore in the identification of the 
four orthotropic elastic parameters and some fracture model 
parameters. In the case of polymers, FEMU is primarily used 
to investigate the behaviors of hyperelasticity and viscoelas-
ticity, with notable studies conducted on materials like high 
impact polystyrene [60], polymethylmethacrylate (PMMA) 
[61], and rubber [62–64]. In biomaterials (biological mate-
rials), such as human skin [65], muscle [66, 67] and wood 
[68, 69], the most common mechanics descriptions are elas-
ticity and hyperelasticity. Ceramics [70–72] are generally 
brittle, and thus the fracture properties are of fundamental 
importance.

Figure 5 shows the evolution in the number of publica-
tions from 2006 to 2022. Metallic materials and their plastic 
behavior are the main focus of FEMU applications. How-
ever, the identification of orthotropic elastic, hyperelastic, 
and fracture properties in advanced composites, biomateri-
als, ceramics, and polymers is gaining in significance.

1.2  Historical Context of FEMU

To the best of the authors’ knowledge, the FEMU approach 
for identifying the material model parameters can be 
traced back to 1971 [73]. It has since seen half a century of 
development and use. This section will review the signifi-
cant milestones in the development of FEMU, see Fig. 6, 

Fig. 4  Publication ratio of different materials and problems studied 
by FEMU, a statistical result from 113 papers. Publication ratio is the 
number of publications in one category divided by the total number 
of publications

Fig. 5  Evolution in the number of publications on a different materials and b problems being investigated using FEMU between 2006 and 2022, 
a statistical result from over 100 papers
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serving as a brief historical perspective on the evolution of 
the technique.

In the pioneering work by Kavanagh and Clough in 1971 
[73], they inversely identified the mechanical properties of 
elastic solids using a FEMU approach, though the termi-
nology FEMU was not used in their work. Iding et al. [74] 
identified the parameters in the stress constitutive function 
of nonlinear elastic solids using FEMU in 1994. Due to the 
difficulty of measuring full-field physical response, FEMU 
remained a niche research area until the 1990s [75, 76].

In the early 1980s, Peters, Ranson, Sutton and others at 
the University of South Carolina [77–81] laid the founda-
tional groundwork for Digital Image Correlation (DIC). 
DIC [77, 82, 83] together with other full-field measurement 
techniques such as Moiré Interferometry [84] and the grid 
method [85], have developed rapidly in the last decades. 
These full-field measurement techniques, especially DIC, 
began to be used widely in the 21st Century. The popularity 
of these full-field measurement techniques has greatly pro-
moted the spread of FEMU. The earliest FEMU approaches 
using full-field kinematic data were reported by Mahnken 
and Stein [86] in 1996 and Meuwissen et al. in 1998 [87].

Sample design is one of the core topics in FEMU. Grédiac 
and Pierron [88] are the pioneers in optimizing specimen 
geometry to enhance the accuracy of parameter identifica-
tion. Their primary focus was to develop the VFM. However, 

their research is also important within the context of FEMU, 
since specimen design is a fundamental building block for 
both methods. Their contribution highlighted the importance 
of geometry design for accurate parameter identification in 
MT2.0.

Several researchers have aimed to improve the fundamen-
tal FEMU strategies. In 2006, Hild et al. [89, 90] proposed 
the first paper on Integrated-DIC (IDIC). IDIC provided a 
different perspective on FEMU by deeply integrating the 
full-field DIC measurement with FEMU. Such an endeavor 
represents an innovation in the fundamental FEMU strategy. 
Wide application of IDIC [91] demonstrated the importance 
of developing FEMU through fundamental strategy refine-
ment. Lava et al. [37] proposed the DIC-leveling method in 
2020, based on their work of creating synthetically deformed 
images [92] in 2009. Fayad et al. proposed the direct leve-
ling method [39] very recently. These strategies mitigate the 
errors due to the difference in calculation method between 
FEA and DIC.

Numerous reviews have contributed to understanding 
FEMU from different perspectives. In 2008, Avril et al. 
[93] published an overview of inverse mechanical parameter 
identification methods based on full-field measurements. In 
2009, Lecompte et al. [94] made the first thorough compari-
son between the FEMU approach and the standard testing 
approach for the calibration of an anisotropic yield function. 

Fig. 6  Milestones in FEMU development history
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Markiewicz et al. [95], Hild et al. [96], and Prates et al. [97] 
have also reviewed major inverse identification methods 
based on full-field measurements. Pierron and Grédiac [4] 
focused on test design advancements in Material Testing 2.0. 
Bruno [98] examined various optical methods and inverse 
identification approaches for mechanical characteriza-
tion of composite materials. Neggers et al. [99] reviewed 
the advance of DIC and FEMU, and discussed the gains 
and challenges related to the big data in these techniques. 
Mahnken [100] published a review paper on the inverse 
identification of constitutive equations. Markiewicz et al. 
[95] overviewed the calibration of constitutive behaviour 
and damage models using the normalized direct approach, 
FEMU and VFM. Andrade-Campos et al. [101] reviewed 
the inverse method in metal forming. Very recently, Römer 
[102] provided a holistic view to highlight the connections 
between the different inverse methods.

Several other important works also contributed to FEMU 
in different aspects. In 2012, Güner et al. [103] published the 
first FEMU paper applying the method to the Yld2000-2d 
yield function [104] and reported on the non-uniqueness prob-
lem. Rose and Menzel [105] reported the first FEMU study 
using kinematic and thermal fields. Also of interest are the 
progress on topology optimization for specimen design [106], 
identifiability analysis [107–109], and non-deterministic [110] 
and hybrid FEMU approaches [111]. Around the same period, 
several PhD studies [112–114] were directed towards the 
development of FEMU strategies. PhD studies on uncertainty 

quantification [115], specimen design [116], multi-view DIC 
FEMU [117], etc. were conducted in the following years. The 
concept of Material Testing 2.0 [8], proposed by Pierron and 
Grédiac in 2021 [4], described the value of full-field heteroge-
neous information for inverse parameter identification.

Figure 7 shows the increase in the number of publications 
on the topic of using FEMU for material model parameter 
identification. The publication counts are obtained from 
Google Scholar1 and Web of Science2 starting from the year 
2000. The keywords3 are selected so as to exclude literature 
on structural dynamics and damage monitoring. The key-
words cannot cover all literature in this topic since additional 

Fig. 7  Number and countries of publications for FEMU studies in constitutive parameters identification. The data is from searches using con-
servative key words

1 https:// schol ar. google. com/ schol ar? q=% 22fin ite+ eleme nt+ model+ 
updat ing% 22+ OR+% 22fin ite+ eleme nt+ updat ing% 22+ OR+% 
22FEM+ updat ing% 22+ OR+% 22int egrat ed+ digit al+ image+ corre 
lation% 22+-% 22hea lth+ monit oring% 22+-% 22dam age+ detec tion% 
22+-% 22vib ration% 22+-% 22dyn amic% 22+-% 22dyn amics% 22& hl= 
en& as_ sdt=0% 2C5& as_ vis= 1& as_ ylo= & as_ yhi=.
2 https:// www. webof scien ce. com/ wos/ woscc/ summa ry/ 528f2 8f0- 
812e- 4b1a- 9dc8- 9bd9d 538e8 0e- 9e316 9ab/ relev ance/1.
3 For Web of Science, the keywords are {ALL = ("finite element 
model updating" OR "finite element updating" OR "FEM updat-
ing" OR "integrated digital image correlation") NOT ALL = ("health 
monitoring" OR "damage detection" OR "vibration" OR "dynamic" 
OR "dynamics")}. For Google Scholar, the keywords are {"finite ele-
ment model updating" OR "finite element updating" OR "FEM updat-
ing" OR "integrated digital image correlation" -"health monitoring" 
-"damage detection" -"vibration" -"dynamic" -"dynamics"}. The sta-
tistics are updated to May 30, 2024.

https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://scholar.google.com/scholar?q=%22finite+element+model+updating%22+OR+%22finite+element+updating%22+OR+%22FEM+updating%22+OR+%22integrated+digital+image+correlation%22+-%22health+monitoring%22+-%22damage+detection%22+-%22vibration%22+-%22dynamic%22+-%22dynamics%22&hl=en&as_sdt=0%2C5&as_vis=1&as_ylo=&as_yhi=
https://www.webofscience.com/wos/woscc/summary/528f28f0-812e-4b1a-9dc8-9bd9d538e80e-9e3169ab/relevance/1
https://www.webofscience.com/wos/woscc/summary/528f28f0-812e-4b1a-9dc8-9bd9d538e80e-9e3169ab/relevance/1
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terms, such as inverse identification, may also be related to 
FEMU. The countries (according to Web of Science) with 
most contributions to FEMU include China, France and 
USA—see the inset in Fig. 7. In addition to research papers, 
the release of user-friendly open-source software [118–120] 
can reduce the barrier of entry for new practitioners in the 
field of FEMU.

1.3  Three Pillars of FEMU and Their Implementation 
Challenges

The basic principle of FEMU is intuitive, as inferred from 
Fig. 2. FEMU involves three primary pillars (Fig. 8): experi-
ments, numerical simulation, and identification strategies 
and optimization methods. The technical implementation of 
a robust FEMU method involves multiple distinct steps in 
each of these three pillars. The steps, while straightforward, 
can be implemented in various ways. Given the long and 
complex characterization chain, the performance of FEMU 
depends on the effectiveness of each step in the process. 
Before defining the objectives of this paper, we analyzed the 
key implementation steps and the associated implementation 
challenges in this section.

1.3.1  Experiments

• Test design and loading conditions: FEMU relies on a 
sufficiently data-rich experiment. The specimen shape 
and loading conditions need to be designed in such a way 
that the material behavior sought rises above the noise 
floor of the adopted measurement system. For instance, 
robustly identifying the shear modulus of an orthotropic 
material requires inducing substantial shear stress states 
in the tested sample. By carefully designing the sample 
geometry, we can better activate the shear stress. With 
FEMU strategies having attained a state of maturity, test 
design for MT2.0 has emerged as one of the primary 
bottlenecks [4].

• Measurement techniques: The experimental data is the 
input of FEMU. It is a critical aspect affecting the accu-
racy and reliability of the outputs, which, in FEMU, are 
the identified parameters. The effectiveness of FEMU is 
heavily dependent on the appropriate and skillful applica-
tion of measurement techniques. Initiatives such as the 
International Digital Image Correlation society’s (iDICs) 
good practices guide for DIC [121] are making a signifi-
cant and positive impact on the advancement of MT2.0.

• Experimental implementation: The test must be executed 
with high precision. It is essential that the manufacturing 
of the sample is exact and closely mirrors its numerical 
counterpart. The fixtures for the sample should be stable 

Fig. 8  Three pillars of FEMU. The kinematic fields measured by DIC are supposed to be the inputs
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[122] and aligned. Accurate synchronization between 
the test machine and the measurement instrument(s) is 
required. The experimental setup should be designed to 
facilitate the understanding and extraction of boundary 
conditions. Experimental implementation are crucial in 
minimizing both systematic and random errors.

1.3.2  Numerical Simulation

• Material model selection: A properly selected material 
model is a prerequisite for the use of FEMU. Proper 
selection of the material model is a challenging task 
highly relying on expertise. Identifying the isotropic 
elastic model parameters of an orthotropic elastic mate-
rial, for instance, is not meaningful. Simultaneously iden-
tifying multiple parameters in some complex material 
models using FEMU can be challenging. It might be dif-
ficult to guarantee a low uncertainty level and uniqueness 
for the parameters in a complex model. Such difficulty 
requires low coupling among the material parameters. 
Decoupling the experimental and modelling errors in 
FEMU is also notably challenging.

• Accurate boundary conditions: The boundary conditions 
used in the FE model represent a crucial aspect of FEMU. 
Correctly imposing these boundary conditions is a chal-
lenging part of setting up a reliable FEMU procedure. 
Seemingly correct assumptions on boundary condition 
can often lead to significant systematic errors. For exam-
ple, accurately modeling the load transfer between speci-
men and grips is very difficult.

• Computational efficiency: FEMU iteratively determines 
the most appropriate material parameters and can thus 
be computationally demanding. The primary computa-
tional bottleneck is the FEA, which is used repeatedly 
to generate the physical responses. It is therefore cru-
cial to develop an efficient FE model that maintains the 
accuracy of the simulation. This demands good practice 
in FE modelling skills, including effective meshing and 
choosing the most efficient solution procedure for the 
given problem. In addition to setting up the FE model, 
the computational effort in FEMU comes also from 
reading results from the simulation, modifying material 
parameters, and launching new simulations.

1.3.3  Identification Strategies and Optimization Methods

• Cost function construction: The cost function, also 
known as objective function, loss function, or error 
function, has a significant impact on the FEMU pro-
cess. Identifiability problems often arise when the cost 
function lacks sensitivity to the desired material model 
parameters. Typically, the cost function is constructed 
by integrating the differences between numerical simula-

tions and experimental data, which may include various 
physical responses such as displacement fields, strain 
fields, thermal fields, forces, etc. It is essential to prop-
erly combine the data in the cost function in a way that, 
for instance, neutralizes the impact of the magnitude of 
the used physical quantities.

• Sensitivity analysis: Sensitivity analysis is a critical but 
frequently overlooked step in FEMU. It aims to evalu-
ate the sensitivity of the loss function with respect to 
each parameter. This step can help predict identifiability 
prior to testing and assess the identification results after 
the tests, as well as contribute to a better identification 
by evaluating and optimizing the cost function and test 
design. In principle, FEMU can run without this step, but 
the identified parameters may have high uncertainty as a 
result.

• Data fusion: The data points used in the cost function 
necessitate consistent handling. A primary task in the 
implementation is identifying corresponding data points 
in the experimental and numerical datasets [123]. This 
often involves interpolating data from one set to the 
other. In addition to matching data points, experimen-
tal data frequently needs smoothing to eliminate noise 
before physical quantities, such as strain fields, are cal-
culated. Calculating the strain field from displacement 
data, for example, requires a specific numerical proce-
dure. This involves choosing an appropriate strain tensor 
and applying a consistent process to both the numerical 
and experimental data, ensuring the resulting strain fields 
are comparable.

• Iterative parameter optimization: FEMU entails solv-
ing an optimization problem to find the global optimal 
solution for a set of constitutive material parameters. 
This optimization problem is in most cases highly non-
convex, with potentially multiple local optima. The gra-
dient-based optimization methods generally converge 
fast but require a good initial guess for the constitutive 
parameters. The derivative-free-based methods are more 
reliable to find global optima but have much lower effi-
ciency. An effective algorithm should offer a large con-
vergence radius to circumvent local optima, while also 
providing rapid convergence to ensure efficiency. The 
initial guess of material parameters should therefore be 
well-informed, or 'educated.' Additionally, the choice of 
convergence criteria and optimization strategy is crucial.

In addition to these three pillars, uncertainty quanti-
fication of FEMU is also critical. FEMU typically yields 
material model parameters derived from processing a spe-
cific experimental dataset. However, calculating the con-
fidence intervals of these identified parameters is not part 
of the standard output of the FEMU process. Repeating 
experiments and identifications can provide insights into 
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uncertainty, but this significantly increases the experimen-
tal workload. Research is necessary to establish a standard 
procedure for determining uncertainty in FEMU.

1.4  Objectives

FEMU faces challenges in computational efficiency, uncer-
tainty quantification, and overall robustness, despite its 
potential in the calibration of various material models with 
limited number of tests. While the basic concept of FEMU 
is straightforward, good practice requires a certain level of 
expertise to handle these challenges. The implementation 
steps (Fig. 8) of FEMU are far more involved than in MT1.0, 
which results in a highly user dependent performance. A 
notable obstacle to its broader adoption is the lack of educa-
tion in the use of FEMU.

This paper aims to fill this gap by offering a thorough 
overview of the crucial components of FEMU and a clear 
guide on implementation practices, as well as by present-
ing FEMU-DIC,4 the first open-source code that integrates 
FEMU and DIC. Additionally, it outlines future research 
directions, encouraging further exploration and enhancement 
of FEMU in tackling emerging challenges in solid mechan-
ics. Our target audience includes researchers and engineers 
in experimental solid mechanics and engineering simulation 
professionals engaged in material model calibration.

2  FEMU Frameworks

The fundamental part of this technique is the FEMU frame-
work. Various FEMU frameworks provide different per-
spectives on the technique, leading to multiple branches of 
FEMU. This review mainly discusses three FEMU frame-
works (see Table 1): the classical FEMU method, leveling-
based FEMU and Integrated DIC. The different FEMU 
frameworks have unique features in terms of efficiency, 
accuracy and simplicity.

2.1  Classical FEMU Method

Classical FEMU [120] (see Fig.  2) is the most widely 
adopted FEMU strategy, thanks to the intuitive principles. 
In the classical FEMU method, the test is carefully designed 
in terms of both sample geometry and loading path. The test 
design guidelines strive to ensure that rich full-field hetero-
geneous kinematic data can be extracted from the sample 
surface. The kinematic fields on the sample surface are then 
measured through DIC. This involves applying a random 
speckle pattern [124] to the surface of the manufactured 
sample. A set of images of the sample surface before and 

during loading process are captured with one or more cam-
eras. Processing the image sets with a DIC algorithm yields 
the heterogeneous kinematic fields on the sample surface.

The mechanical test is then numerically simulated using 
FEA. The sample geometry must match that of the real test; 
it is therefore advisable to verify the manufacturing accu-
racy. The boundary condition can be obtained either from 
the load cell or from the displacement maps measured by 
DIC. A material model is selected based on user experience 
that is capable of adequately describing the behavior of the 
examined material. Initial guesses of the unknown param-
eters are provided for the material model. The kinematic 
fields of the sample are computed using FEA based on these 
initial material model parameters.

A cost function is constructed as the sum of square differ-
ences (SSD) between the numerically calculated kinematic 
fields and the experimentally measured counterparts. If 
the given model parameters yield a significant discrepancy 
between the simulated and measured kinematic fields, the 
cost function value is relatively large. Using an optimization 
algorithm, the material model parameters in the numerical 
simulation can be updated by iteratively minimizing the cost 
function. When the simulation results are sufficiently close 
to the real test results, the updated parameters in the numer-
ical simulation can serve as the desired material model 
parameters of the examined material.

The major advantage of classical FEMU is its conceptual 
simplicity. There are, however, some sources of potentially 
significant errors. One of the main concerns is the potential 
inconsistency in the kinematic field calculation between 
DIC and FEA. The inconsistencies includes the shape func-
tion difference, subset filter effect in DIC, strain calcula-
tion method difference, strain filter window size deviation, 
data point misalignment between FEA and DIC, etc. These 
inconsistencies lead to different degrees of smoothness on 
the kinematic fields. The errors associated with inconsist-
encies in the kinematic fields may propagate into the final 
parameter identification.

2.2  Leveling‑Based FEMU

Some ‘leveling-based FEMU’ methods have been proposed 
to reduce the inconsistency between FEA and DIC, and con-
sequently, improve the identification accuracy. The terminol-
ogy ‘leveling’ here denotes equalizing some steps in FEA 
and DIC. This section focuses on two leveling-based FEMU 
methods: the direct-leveling method and the DIC-leveling 
method. In the direct-leveling method, the same strain cal-
culation method are applied to the displacement and strain 
fields in both FEA and DIC. In the DIC-leveling method, 
virtual speckle pattern images are generated from the simu-
lated displacement fields. The displacement and strain fields 
can therefore be calculated using the same parameters.4 https:// github. com/ BinCh enOPEN/ FEMU- DIC.

https://github.com/BinChenOPEN/FEMU-DIC
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2.2.1  Direct‑Leveling Method

The so-called direct-leveling method (see Fig. 9) is a simple 
way to minimize inconsistency issues. Denys et al. [41] and 
later Zhang [125] used the direct-leveling method to elimi-
nate the variation in the strain calculation method (and thus 
the strain tensor). In their method, the leveling proceeds in 
two steps: tensor-leveling, and strain-leveling. Tensor-lev-
eling means that the strain tensor is the same in FEA and 
DIC. Strain-leveling involves calculating the strain using the 
same method and virtual strain gauge size. The researchers 
first interpolated the FEA displacement data to the DIC data 
points, and then used the strain window method [126] to cal-
culate the strain fields. The strain tensor and strain window 
used for FEA and DIC are the same. The processed strain 
field from FEA and the strain measured by DIC can then be 
directly compared for parameter identification.

Fayad et al. [39] proposed to include three steps of lev-
eling: subset-leveling, tensor-leveling, and strain-leveling. In 

the additional step of subset-leveling, the displacement fields 
from FEA are filtered using the same subset size and shape 
function as used in DIC. However, the subset-leveling on the 
displacement fields calculated by FEA may not fully match 
the subset filtering in DIC due to the difference in sampling 
density. For instance, if the subset can only cover a single 
calculation point, the subset-leveling cannot be activated in 
direct-leveling method.

2.2.2  DIC‑Leveling Method

The DIC-leveling approach [37, 127] can adequately address 
most of the issues due to inconsistencies between DIC and 
FEA results, leading to better identification accuracy. The 
basic principle is shown in Fig. 10. First, the displacement 
maps are simulated by FEA using a set of material model 
parameters as the initial guess. The displacement maps are 
imposed onto the reference image to generate a set of syn-
thetically deformed images. This is implemented using a 

Fig. 9  Direct-leveling FEMU strategy
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FEA-based synthetic image deformation procedure [92]. 
Consequently, two image sets, the virtual image set and the 
real image set, can be obtained. DIC software then matches 
the two image sets using the same DIC settings, meaning 
the same DIC engine and the same user-defined parameters, 
such as subset size, strain tensor, strain calculation algo-
rithm, shape function, etc. The same region of interest (ROI) 
and calculation points are selected for the two image sets, 
naturally satisfying the requirement of the same data point 
locations and the same strain calculation settings.

By minimizing the error map between the kinematic 
fields obtained from the virtual and the real image sets, the 
optimal material model parameters can be iteratively esti-
mated. In this method, a set of virtual images need to be 
regenerated from the displacement fields calculated by FEA 
in each iteration. This requires considerable computational 
resources.

The DIC-leveling method can be traced back to the 
work of Lava et al. [92]. Their work focuses on systematic 
errors in DIC for large heterogeneous deformation meas-
urement, not in the context of FEMU. They synthetically 
generated deformed speckle pattern images using the large 

heterogeneous displacement fields calculated from FEA. 
The displacement fields between the synthetic speckle pat-
tern images were then extracted by DIC and compared with 
the ground truths from FEA. This unique approach ena-
bles us to evaluate the accuracy of the DIC algorithm. The 
same method was extended to 3D cases by Guildenbecher 
[128] to compare the results of a numerical simulation to 
the experimental results for a dynamic problem. The DIC-
leveling approach was generalized to FEMU by Lava et al. 
[37]. It can level the FEA data, so that it preserves the same 
filtering and spatial resolution as that in the DIC measure-
ment results. This technique has been applied to identify the 
orthotropic elastic properties of wood [68] and the param-
eters in Swift's hardening law for a notched specimen design 
[46].

2.3  Integrated DIC

Integrated DIC (IDIC) [19, 36, 91, 129–134] is an alterna-
tive FEMU method. It can be regarded as an extension of 
the classical FEMU. The method was also meant to improve 
the identification accuracy. It is proposed based on the basic 

Fig. 10  DIC-leveling FEMU strategy
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philosophy that the constitutive parameters are of interest 
instead of the kinematic fields. Once the identification is 
complete, the kinematic fields are the intermediate data, 
which are not necessarily measured. IDIC reconciles DIC 
and FEA by eliminating the step of calculating displace-
ment from the speckle pattern images. In IDIC, the param-
eters are identified by constructing a cost function directly 
from the speckle pattern images instead of the kinematic 
fields (Fig. 11). The displacement maps obtained in FEA 
are imposed onto the deformed image to generate a virtual 
reference image. The parameters can be iteratively estimated 
by minimizing the intensity difference between the virtually 
generated image and the real image using the cost function 
below,

(1)�(�) =
∑

t

∑
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�
f
�
�i; t

�
− g

�
�i + �(�); t

��2

where f  and g are the intensity of the reference and deformed 
image, respectively; �(�) is the displacement field calculated 
by FEA with a parameter vector � ; �i is the image coordi-
nate; i and t  designate the image pixel index and the load 
step, respectively. IDIC is a one-step method for identifying 
all the parameters in a single iterative procedure. The two 
former methods, by contrast, are two-step approaches that 
require kinematic field measurement, followed by iterative 
parameter identification from the kinematic fields.

Direct application of IDIC to identify the elastic–plas-
tic model with only Dirichlet boundary conditions may 
not be robust. The elastic moduli have a very small influ-
ence on the displacement field. External loads should be 
included in the cost function for more accurate identifica-
tion, leading to a modified integrated mechanical image 
correlation [135]. In the cases where large deformations 
and rotations cause parts of the sample to rotate in or out-
of-view, or when the speckle pattern degrades due to large 

Fig. 11  IDIC strategy
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or complex deformations, IDIC is not applicable anymore. 
In such cases, the projection images of the contour lines 
of the test specimens could be used, leading to mechani-
cal shape correlation, a novel IDIC based technique used 
for parameter identification [136]. Similar to IDIC, Hild 
et al. [137] proposed an integrated digital volume corre-
lation (IDVC) based on a set of 3D tomography images. 
To improve the efficiency, Jailin et al. [138] developed an 
integrated Projection-based DVC. The method is based 
on Projection-based DVC [139, 140], which works with 
a few radiographs instead of reconstructed 3D volumes. 
A similar concept of IDIC has also proven effective for 
fringe patterns [141]. It involves determining the material 
model parameters by directly comparing simulated and 
experimentally measured fringe patterns [141].

IDIC has been adopted to identify orthotropic elastic 
model [142], elastoplastic model [143], micromechanical 
constitutive model [144, 145], cohesive zone model [131], 
phase-field fracture model [146] and residual stress [147, 
148]. Except for being used in mechanics, IDIC can also 
correct the lens distortion in computer vision applications 
[149–151]. The method uses a known numerical pattern and 
a picture of the same pattern printed on a plate. The distor-
tion parameters are iteratively estimated by comparing the 
numerical pattern and the image using IDIC concept. Ver-
meij and Hoefnagels [152] also adapted the IDIC framework 
into high-resolution Electron Backscatter Diffraction [153]. 
Shi et al. used IDIC procedure to determine the crystal ori-
entation and pattern center [154] and elastic strain [155] by 
comparing experimental and simulated electron diffraction 
patterns.

A comparative work by Ruybalid et al. [130] shows that 
the classical FEMU and IDIC are equally robust with respect 
to poor initial guesses for parameters. Image interpolation 
has significant effect on both FEMU and IDIC [156]. Under 
the assumption of small noise level, the weighted FEMU and 
integrated DIC have the same covariances of the identified 
parameters [157]. They are also equally sensitive to errors 

made in the finite element model. Compared with the classi-
cal FEMU methods, IDIC is (i) less sensitive to image noise, 
(ii) less laborious, and (iii) more reliable due to the fewer 
sources of potential error. These advantages are especially 
pronounced in tests with small displacements, large amounts 
of image noise, specimen misalignment with the loading 
direction, and/or complex kinematics [130]. However, IDIC 
is inherently very sensitive to the rigid-body motion of the 
sample, which can hardly be avoided in real-world experi-
ments. A comparison of different FEMU strategies is shown 
in Table 1.

3  Material Models

In FEMU, the material model selected should be a good 
match for the experimental results. At the same time, it 
should also be concise (have a limited number of unknown 
material model parameters) to ensure simplicity and 
improved identifiability. Numerous material models, such as 
elastic, hyperelastic, plastic, fracture and thermomechanical 
models have been proposed to describe the mechanical prop-
erties or, more generally, behaviors of different materials.

Here, we briefly review some typical material models that 
are most widespread in the FEMU community. However, 
we are not aiming to cover the extensive material models, 
such as viscoelastic [158], hypoplastic [159] and dynamic 
[160] models, that have been identified by FEMU. Omis-
sions should not be seen as implying that certain models are 
less important or impractical. For simplicity, the specimens 
are supposed to be subjected to plane stress state condition 
unless otherwise stated. Considering the range of material 
models covered in this section, it is important to highlight 
that the symbols employed across various constitutive equa-
tions introduced in this chapter are not unique. They are not 
aligned with the List of Symbols.

Table 1  Comparison among different FEMU strategies

FEMU methods Advantages Disadvantages

Classical FEMU [120] Intuitive principle
Easy to use with commercial software

Less accurate due to the inconsistency 
between simulation and experiment

Less robust
DIC-leveling method [37, 46, 68, 92, 128] Accurate, since it partially avoids inconsistency 

between simulation and experiment
Computationally expensive to generate 

virtual images in every iteration
Direct-leveling method [39, 107] Accurate, since it partially avoids inconsistency 

between simulation and experiment
More efficient than DIC-leveling method

Less accurate than the DIC-leveling method

Integrated DIC [19, 36, 91, 129–132] Robust to image noise
Simple implementation
One-step procedure to directly estimate the parameters 

from the speckle pattern images

Sensitive to unexpected rigid-body motion
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3.1  Linear Elastic Models

For the sake of simplicity, the elastic models introduced 
here are mainly linear elastic models. The models include 
the isotropic and orthotropic elastic models. These models 
generally permit robust, accurate and efficient identification 
using FEMU. In some cases, such as holocellulose fiber 
paper [161], the material may not be homogeneous [107], 
so a heterogeneous distribution of elastic parameters is more 
practical and accurate. However, accurate description of the 
heterogeneous material requires a much larger number of 
constitutive parameters. Identification of heterogeneous 
parameter distribution is consequently still a challenging 
task. A summary of some typical references on the topic of 
identification of linear elastic models using FEMU is given 
in Table 2.

3.1.1  Isotropic Elastic Model

The isotropic elastic model is a commonly used material 
model described by only two independent parameters: the 
elastic modulus E and Poisson’s ratio v. The constitutive 
equation is:

where �xx , �yy , and �xy are the stress components along x 
and y directions and shear stress, respectively. �xx , �yy , and 
�xy are the strains along x and y directions and shear strain, 
respectively.

The two material model parameters can be easily esti-
mated through a classical uniaxial tensile or compression 
test. In the context of FEMU, the isotropic elastic parameters 
are rarely the sole targets of calibration [134]. Instead, these 
parameters are determined as a part of a more complicated 
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task, such as the identification of elasto-plastic [162] or frac-
ture parameters. This does not mean that calibrating iso-
tropic elastic parameters with FEMU is necessarily overkill. 
Even in a classical uniaxial tensile test, a perfectly homoge-
neous strain distribution in the sample is hard to achieve, and 
FEMU can take any heterogeneity into consideration. FEMU 
can also track the evolution of isotropic elastic modulus, 
leading to the identification of damage parameters [163].

3.1.2  Orthotropic Elastic Model

Identification of orthotropic elastic parameters using FEMU 
[164, 165] is a major task in experimental mechanics. Rolled 
steels, fiber-reinforced composites [54], wood-based materi-
als (e.g., wood [68], bamboo, and their derivatives [166]), 
etc., are typical orthotropic materials. The elastic response 
of these materials is governed by the following orthotropic 
elastic constitutive equation:

where Ex , Ey , Gxy are the elastic moduli along x and y direc-
tions and shear modulus, respectively. �xy and �yx are the 
Poisson’s ratio under the constraint of �xy

Ex

=
�yx

Ey

 . These param-
eters can generally be effectively and robustly identified 
using FEMU.

3.1.3  Elastic Models for Heterogeneous Materials

Most mechanical models are intended to describe homoge-
neous materials with a uniform distribution of elastic param-
eters. By contrast, some composites, such as wood [167], 
bamboo and wood composites [168], have significantly 
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Table 2  Reference for isotropic and orthotropic elastic model calibration using FEMU

Refer-
ence

Year Models Materials Sample tests

[54] 2007 Orthotropic Glass epoxy composite Iosipescu test
[134] 2010 Isotropic E-glass fiber/vinylester composite Biaxial tensile test of Cruciform geometries
[65] 2013 Orthotropic Human skin In vivo tensile test
[164] 2013 Orthotropic 3D Woven Composite Three-point bending test
[165] 2018 Orthotropic Carbon fiber-reinforced plastic Plate specimen bent under a point load
[51] 2019 Orthotropic Carbon/epoxy composites Compression test of an open-hole sample
[53] 2021 Orthotropic Carbon fiber reinforced polymer composite Three-point bending test
[59] 2022 Orthotropic All-lignocellulose composites Tensile test of strip sample
[68] 2022 Orthotropic Pinus pinaster wood Compression tests with on-axis and off-axis specimens
[142] 2023 Orthotropic Carbon fiber-reinforced polymer Tension and compression tests of open-hole sample
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heterogeneous property distribution due to either the 
intended material design or as a result of the inherent char-
acteristics of the material. The rich heterogeneous strain 
information measured on the sample surface may enable the 
identification of the heterogeneous parameter distribution. In 
this task, the model itself remains simple, but the material 
model parameters may vary spatially and/or temporally. The 
simplest way to evaluate the parameter distribution on the 
sample is to divide the whole specimen into several material 
zones, with homogeneous material properties within each 
zone. The elastic parameter distribution [169] has been iden-
tified for several heterogeneous materials. Sutton et al. [170] 
and Andrade-Campos et al. [11] identified the local material 
behavior variation in the weld region of a metal. Tucci et al. 
[171] calibrated the plastic model parameters as a function 
of the distance from the welding centerline.

3.2  Hyperelastic Models

Hyperelastic materials, such as rubbers [62] and some bio-
logical tissues, are materials exhibiting significant nonlin-
earity. For these materials, conducting standard experiments 
yielding a perfectly homogeneous stress state is a challenge. 
FEMU has also been extensively applied (a summary of ref-
erences is given in Table 3) to characterize the hyperelastic 
properties (see some typical hyperelastic models in Ref. 
[172]), since FEMU can reduce the errors from non-uniform 
strain states in strain–stress curves fitting. Three hyperelastic 
models, the Mooney–Rivlin model [118], the compressible 
Neo-Hookean hyperelastic model [173] and the Gent hyper-
elastic model [119], that have seen widespread application 
of FEMU are briefly reviewed. While some other feasible 
hyperelastic models, such as the Ogden model [174] and the 
Yeoh model [175, 176], are not detailed here.

Neo-Hookean hyperelastic model: this model [177] is one 
of the simplest hyperelastic model. It is expressed as

where C
1
 is the hyperelastic parameters. I

1
 is the first prin-

cipal invariants of the right Cauchy-Green deformation 
tensor; W denotes the strain energy density. The in-vivo 
muscle tissues [66, 67], silicone rubber material [178], and 
multi-material member [173] were modeled using the Neo-
Hookean hyperelastic model with their parameters calibrated 
using FEMU.

Mooney–Rivlin model: it is a phenomenological model. 
It is more general than Neo-Hookean hyperelastic model 
by considering additional nonlinearity in material response. 
The Mooney–Rivlin model has the constitutive equation 
[172] of

where C
1
 , C

2
 are the two unknown model parameters that 

are the target of calibration; I
1
 , I

2
 are the first and second 

principal invariants of the right Cauchy-Green deformation 
tensor. The model and its variations have been employed to 
describe the hyperelastic behaviour of high impact polysty-
rene [60], latex membrane [179], silicon-rubber [64] and a 
human lower limbs [118], with the model parameters being 
identified by FEMU.

Gent hyperelastic model: it is a phenomenological model 
proposed by Gent [180]. FEMU is also a good way to cali-
brate the Gent hyperelastic model [119]. This model [formu-
lated by 2 parameters for a compressible Gent hyperelastic 
model, see Eq. (6)] [181] has been adopted to describe the 
hyperelastic properties of skin tissue [119]. This model is 
more complex than the former two hyperelastic models by 
capturing the limiting chain extensibility phenomena, which 
is a characteristic of skin behavior when being stretched 
[119].
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Table 3  Reference for 
hyperelastic model calibration 
using FEMU

Refer-
ence

Year Models Materials Sample tests

[64] 2006 Mooney-Rivlin Silica-filled silicone rubber Tear test
[66, 67] 2014 Neo-Hookean Thigh muscles In-vivo compression tests
[173] 2018 Neo-Hookean Multi-material silicon members Uniaxial tensile test
[178] 2019 Neo-Hookean Silicone rubber material Indentation
[60] 2020 Mooney-Rivlin High impact polystyrene Uniaxial tensile test
[119] 2021 Gent Caucasian skin Uniaxial tensile test
[62] 2021 Mooney-Rivlin and Yeoh Rubber Equibiaxial tensile test
[118] 2023 Neo-Hookean, Mooney-

Rivlin, and Ogden
Human lower limbs In-vivo macro-indentation
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where � and Jm are the two unknown material model 
parameters.

3.3  Plasticity Models

The calibration of multiple-parameter plasticity models is one 
of the most important objectives in the FEMU community. The 
phenomenological plasticity models are generally described 
by two major ingredients: the yield criterion and the harden-
ing law. The yield criterion sets the conditions that the plas-
tic deformation initiates. The hardening law describes how 
the yield surface evolves as the specimen undergoes plastic 
deformation. A summary of some publications on the identi-
fication of different plasticity models using FEMU is shown 
in Table 4. More information on the calibration of advanced 
plasticity models for sheet metals can be found in a review by 
Rossi [182].

3.3.1  Yield criteria:

Here we succinctly review the identification of two typi-
cal yield criteria, the Hill48 yield criterion [183] and the 
Yld2000-2D yield criterion [104].

 Hill48 anisotropic yield criterion is a very typical aniso-
tropic yield criterion, particularly for sheet metal anisotropic 
behaviour modeling. Under plane stress conditions, it can 
be written as

where �eq refers to the equivalent stress and �ij is the Cauchy 
stress tensor component. For simplicity, the strain hardening 
behavior is generally represented by the true stress–strain 
curve obtained through an uniaxial tensile test along the roll-
ing direction, leading to the constraint of G + H = 1 and thus 
three independent parameters [18].

Conventionally, the three parameters are calibrated by 
uniaxial tensile tests of the samples along 0°, 45° and 90° 
to the rolling direction. With FEMU, they can be estimated 
from a single test. This model has been applied to calibrate 
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Table 4  Reference for plastic model parameters identification using FEMU

Refer-
ence

Year Models (yielding/hardening) Materials Sample tests

[87] 1998 Von Mises and Hill48/Linear Aluminum A1200 Uniaxial tensile test on an asymmetrically notched sample
[207] 2008 Hill48/Swift Sheet metal DC06 Biaxial tensile test on a perforated cruciform specimen
[94] 2009 Hill48/Swift Sheet metal DC06 Biaxial tensile test on a cruciform specimen
[45] 2012 Hill48/Swift Dual-phase steel DP600 Tensile test on a dog-bone sample
[200] 2012 Hill48/Ludwik Aluminum 2024-T3 Asymmetrically notched tensile sample
[42] 2014 Hill48/Hockett–Sherby Sheet steel Biaxial tensile test on multiple cruciform specimens
[192] 2015 Yld2004-18p/Mixed isotropic-

kinematic hardening
DC04 mild steel Uniaxial and biaxial tension, simple shear, uniaxial tensile 

tests and bulge test
[38] 2016 Hill48/Swift Sheet metal DC06 Erichsen bulging test
[143] 2016 Von Mises/linear kinematic Stainless steel Biaxial tensile test on a cruciform specimen
[36] 2017 Hill48/Ludwik Aluminum alloy Dog-bone tensile sample
[41] 2017 Von Mises/p-model X70 grade steel Tensile test on a curved specimen
[44, 204] 2017 Hill48/p-model High strength steel S690QL Thick tensile sample perforated on the front and thickness 

surfaces
[11] 2018 Von Mises/Swift Welded aluminum blanks Tensile tests
[198] 2018 Von Mises/p-model High strength steel S690QL Tensile test on a thick notched sample
[193] 2019 Yld2004-18p/Voce with linear term DC04mild steel Tensile test on a specifically designed butterfly sample
[133] 2019 Hill48/Ludwik Aluminum Alloy 2219 Dog-bone sample
[187] 2019 Yld2000-2D/Voce 7B04 aluminum alloy sheet Punch test on a specifically designed sample
[188] 2020 Yld2000-2D/Swift Aluminum alloy and steel Tensile test on a group of specifically designed samples
[210] 2021 Hill48/ Bilinear Aluminum alloy 2124-T851 Tensile test on a dog-bone sample
[107] 2022 Yld2000-2D/Swift Sheet steel SPCE Tensile test on a specifically designed notched sample
[186] 2022 Yld2000-2D/Swift Sheet steel SPCE Tensile test on a specifically designed notched sample
[46] 2023 Yld2000-2D/Swift Dual-phase steel DP600 Tensile test on specifically designed interior-notched 

samples
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the plasticity of several materials, e.g., anisotropic steel 
sheet [9, 38, 184, 185], aluminum alloy [103], etc.

Yld2000-2D yield criterion was proposed by Barlat et al. 
[104] in 2002. It has the advantage of additionally consider-
ing the equibiaxial stress state. The model is formulated as

where m is a material coefficient (generally set to 6 or 8) 
based on the metal microstructure (derived from crystal 
plasticity models). It can also be determined through labo-
rious experimental work [9]. X�

i
 and X��

i
 are the eigenvalues 

of stress tensors �′ and �′′ , which are obtained as

where � is the Cauchy stress tensor. The tensors �′ and �′′ 
are written as

This model has 8 independent parameters a
1−8

 that need 
to be calibrated. This yield criterion has proven to be a com-
petitive alternative to the Hill48 criterion for calibrating the 
plastic property of anisotropic metals [107, 162, 186–188].

 Some other criteria, such as the Bron and Besson yield 
function [189] and the non-quadrat Yld2004-18p yield cri-
terion [190–193], to name just a few, are also feasible and 
identified with FEMU. For clarity purposes, they are not 
detailed here.

3.3.1.1 Hardening Laws Three typical hardening laws are 
briefly introduced here. They are the Swift's hardening law 
[194, 195] and Voce's hardening rule [196, 197] for small 
hardening, and the p-model hardening law [198] that com-
bines the former two classical models for describing pre- and 
post-necking hardening. Other alternatives, such as the lin-
ear kinematic hardening law [143], the non-linear Hockett–
Sherby hardening function [42] and the Ludwik hardening 
law [133, 199, 200], are not presented here, although they 
have also been extensively investigated in FEMU. While the 
most widely used hardening laws are quite simple, to the 
point where it might seem unnecessary to calibrate them 
inversely from heterogeneous tests, FEMU is not just a 
meaningless complication of this identification task. Com-
pared to classical tests, FEMU can improve the parameter 
identification accuracy by accounting for the plastic anisot-
ropy. Furthermore, it allows the identification of the mate-
rial parameters beyond the onset of diffuse necking [201].
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Swift’s hardening law is one of the most used phenom-
enological hardening laws describing the evolution of flow 
stress in sheet metal forming. It is expressed as

where K , �
0
 , and n are the three unknown model parameters. 

Swift’s law can only describe a monotonically increasing 
strain hardening behavior.

Voce’s hardening law is the other widely used harden-
ing law, which allows for strain hardening saturation. It is 
written as

where �
0
 is the unknown yield stress; K and n are the other 

hardening parameters. The two hardening laws described 
above are only effective in the pre-necking region, however. 

Their performance in the post-necking region is question-
able [202].

p-model is a model proposed by Coppieters and Kuwa-
bara [203] to better describe the post-necking behavior [204] 
and is written as

where p is the so-called post-necking hardening param-
eter and �max is the maximum uniform strain. There are 5 
unknown parameters involved in this model.

The aforementioned hardening laws have very few 
unknown parameters. FEMU can efficiently identify all 
parameters in the Swift's hardening law [44–46, 205–207], 
Voce's hardening law [42, 187, 196], and p-model [41, 203] 
using just one or a few tests.

Note that the stress–strain curves of plastic materials are 
generally quite complicated. Existing models struggle to fit 
the real hardening behavior, particularly in the post-necking 
region. A simple way to alleviate this issue is to describe 
strain hardening behavior with a high-resolution multi-linear 
hardening model [198, 208–210]. Real hardening behavior 
has been approximated using a piecewise linear function fol-
lowed by a smoothing operation based on area conservation 
[198]. The piecewise linear function requires many more 
parameters to ensure sufficient accuracy than the previously 

(11)�eq = K
(
�

0
+ �

pl
eq

)n

(12)�eq = �
0
+ K

(
1 − e−n�

pl
eq

)

(13)

𝜎eq =

⎧⎪⎨⎪⎩

K
�
𝜀0 + 𝜀

pl
eq

�n

, 𝜀
pl
eq < 𝜀max

K
�
𝜀0 + 𝜀max

�n
+

Kn(𝜀0+𝜀max)
n−1

p

�
1 − e

−p
�
𝜀
pl
eq−𝜀max

��
, 𝜀

pl
eq > 𝜀max



 B. Chen et al.

mentioned hardening law. In general, it is more computation-
ally expensive for FEMU.

3.4  Fracture Models

There are many ways to model a fracture process zone or 
crack growth. We can resort to the cohesive zone model 
(CZM) [211, 212], the phase-field method [213], Extended-
finite element method (FEM) [214], and the linear elastic 
fracture mechanics model. CZM focuses mainly on crack 
propagation with a distinct fracture process zone behind the 
crack tip, e.g., delamination of brittle composite materials. 
To model with CZM, a known crack path is required. The 
phase-field method is a more versatile method capable of 
modeling various materials without the crack path informa-
tion in advance. Linear elastic fracture mechanics (LEFM) 
is another simple and conventional approach to determine 
the fracture properties, e.g., the critical stress intensity factor 
(fracture toughness). The main assumption of LEFM is that 
plastic deformation in the near crack tip region is negligible, 
suitable for homogeneous brittle materials [19]. Except for 
these models, the interface model [215] that can describe 
the response of joint can also be effectively calibrated by 
FEMU [216].

CZM is one of the most frequently investigated fracture 
models in FEMU [217], particularly in the study of (quasi-) 
brittle materials (e.g., ceramics, brittle composites), thanks 
to the advantages it offers in terms of good description of the 
physical phenomena and the physically meaningful param-
eters [218].

There are different traction–separation curves in CZM, 
such as the classical bilinear traction–separation [219, 220] 
(see the traction–separation curve in Fig. 12a) and the Park-
Paulino-Roesler (PPR, Fig. 12b) traction–separation [221], 
have been developed. The traction–separation relation in 
CZMs can be identified through two different strategies: a 
parameter optimization method and a shape optimization 
method. In the parameter optimization method, the trac-
tion–separation curve in CZM is described by a limited 

number of shape parameters (Fig. 12a and b). In the shape 
optimization method, the traction–separation curve is not 
governed by an explicit formula. Instead, it is fitted to a 
group of scattered points (Fig. 12c).

The classical bilinear model (Fig. 12a) can be described 
by only three parameters: initial stiffness, maximal traction 
and maximal separation (or fracture energy). This model has 
been used and identified in the study of various materials, 
such as porcine aorta [222] and transparent wood [58].

The shape of the traction–separation curve in bilinear 
CZM can be changed using a potential-based model such 
as PPR. The PPR model has enhanced flexibility but more 
complexity to model the traction–separation relationship. It 
includes 4 independent parameters. A schematic diagram 
of the traction–separation curves of this model is shown 
in Fig. 12b. The identification of PPR model of various 
materials has been thoroughly investigated by a group of 
researchers from Brazil and France. In their studies, wedge 
splitting tests (WSTs) were generally conducted to evaluate 
the cohesive properties of mortar [56] or refractories [70, 
71, 223–225]. The effectiveness of FEMU to identify the 
PPR model was evaluated through a sensitivity analysis by 
resorting to the so-called Sobol sensitivity indexes [220].

The shape optimization method (Fig. 12c) does not rely 
on prior assumptions on the shape of the traction–separa-
tion relation [61, 217, 226]. A set of scattered points in the 
traction–separation domain can be obtained through FEMU. 
The traction–separation relation is then interpolated from 
these points using spline interpolation (see Fig. 12c). In, this 
way, a more complex traction–separation curve is obtained. 
Such freedom with respect to the traction–separation curve 
offers the possibility to characterize new materials without 
prior knowledge of the fracture properties. This strategy has 
been used to study the fracture properties of a ductile adhe-
sive, Devcon Plastic Welder II, and a quasi-brittle plastic, 
G-10/FR4 Garolite [217]. In these tasks, the parameters were 
identified through four-point bending tests on single edge-
notched beam (SENB).

Fig. 12  The traction–separation curves in a bilinear CZM, b PPR CZM and c CZM interpolated from a set of scattered points
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3.5  Thermomechanical Models

In many scientific or industrial applications, the mechanical 
behavior of a material or structure will be strongly affected 
by coupled temperature and mechanical loading. In such 
cases, it becomes necessary to identify the thermomechani-
cal parameters of the materials [227].

One of the simplest thermomechanical models is an elas-
tic model coupled with the coefficient of thermal expan-
sion (CTE) [228]. In such a model, in addition to the elastic 
deformation, the heat loading will also induce deformation. 
Dong et al. [229] identified the thermo-mechanical param-
eters (two isotropic elastic parameters plus one isotropic 
CTE) of the Ni-based superalloy GH4169 at 20 to 700 °C. 
Zhao et al. [129] identified the parameters (three orthotropic 
elastic parameters and two orthotropic CTEs) in an ortho-
tropic thermo-mechanical material model for nickel-based 
single crystal superalloys from 600 to 1000 °C based on a 
modified IDIC method.

Rose and Menzel [105] proposed and identified a thermo-
mechanically coupled plasticity model with 15 unknown 
parameters. This model includes the thermal conductivity, 
heat capacity, thermal expansion, isotropic elastic param-
eters, hardening and Hill parameters in the identification 
process. The authors further extended this model to allow 
a thermo-mechanically consistent scaling of the dissipation 
with an additional material parameter, i.e., the dissipation 
factor [230]. The thermomechanical model was calibrated 
for an aluminum alloy. The uniaxial tensile tests on dog-
bone samples of the aluminum alloy were carried out at 
room temperature. Their deformation fields were measured 
by a DIC system, while the temperature field was captured 
by an infrared (IR) camera. The parameters in these models 
were then identified using FEMU from the measured defor-
mation and temperature fields.

Gao et al. [231] identified a temperature-dependent elas-
tic–viscoelastic behavior model using FEMU. This model 
involves 7 unknown parameters. In their work, the DIC-meas-
ured displacement on the boundary and the temperature field 
from IR camera were used as the boundary condition instead 
of being included in the cost function. As these models are 
rather complicated, the readers are referred to [105, 230, 
231] for a detailed model description. Jailin et al. [227] and 
Campello et al. [232] calibrated a creep law weakly coupled 
to the phase transformation of Zircaloy-4 using FEMU. The 
creep behavior modeled by a thermo-mechanical model was 
also identified for an environmental barrier coating [233].

3.6  Summary of Material Models in FEMU

Table 5 summarizes some typical material models being 
extensively used in FEMU. Large systematic errors in 
FEMU sometimes stem from inaccuracies in the constitutive 

equations. There is currently no systematic way to select a 
best-fit material model. Instead, the most appropriate mate-
rial model at hand is selected based on expertise. The model 
should be selected on a physical basis to describe a particu-
lar aspect of material behavior (elasticity, plasticity, fracture, 
etc.). A wrongly selected material model could lead to sub-
stantial systematic errors or random errors in the identified 
parameters [68].

A material model involving a large set of parameters may 
be a good fit for complicated material behavior. As pointed 
out by Kolymbas [234], introducing overly complex mate-
rial models poses several challenges. It hampers their practi-
cal application, diminishes computational efficiency, limits 
the adoption by research groups to only their proprietary 
models, reduces physical interpretability, complicates cali-
bration and validation, and raises the likelihood of overfit-
ting the material response. Additionally, complex models 
typically involve a large number of parameters, which can 
complicate the identification process. Thirdly, since FEMU 
identifies phenomenological models, it remains uncertain 
whether such models can fully capture all the underlying 
mechanisms.

Material models should match the physical meaning well 
and describe the material response within a decent user-
defined error margin. Every material model has a certain 
range of application. To reduce systematic error, application 
of the material model should avoid extrapolation. Different 
research groups are addressing this model selection prob-
lem by developing strategies both to evaluate the existing 
material model [2, 235] and to revise material modelling 
approaches to make them more universally applicable [236].

A general recommendation regarding material selection is 
to favor simplicity, but not to the point of oversimplification. 
The current advancement of AI technology also holds poten-
tial for discovering new material models [237]. It is essential 
to understand that a calibrated model will be accurate under 
the specific conditions for which it was calibrated. There-
fore, it is advisable to design non-conventional experiments 
to mirror the processes that will be simulated later on, for 
instance, a forming process.

4  Test Design

To ensure good identifiability and robust identification, the 
impact of each sought parameter needs to be “fully acti-
vated” in the measured heterogeneous deformation fields. 
Otherwise, the corresponding parameter may be difficult 
to robustly identify through FEMU. A rich strain state in a 
highly heterogenous strain field, can generally be expected 
to permit simultaneous identification of multiple param-
eters. The sample geometry may have more impact on the 
identified parameters than the displacement noise and the 
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selected area of displacement field [238]. It is thus necessary 
to carefully design the sample geometry and load paths for 
the examined material and material model—an important 
topic that makes up the very core of the FEMU technique 
and has been discussed in some review papers [4, 239].

The strategies for sample geometry design roughly fall 
into two major categories: (i) heuristic-based design; (ii) 
optimization-based design. The heuristic-based design gen-
erates geometries according to certain practical rules. This 
requires extensive expertise. In most cases, the tests are not 
optimal. It is, in theory, more reliable to consider test design 
as an optimization task, which leads to optimization-based 
design. In optimization-based designs, the test is para-
metrized by way of a set of modifiable parameters. Opti-
mal tests for robust parameter identification are developed 
through iterative updating by optimizing certain qualitative 
or quantitative criteria. Note that test design shares the same 
role and importance in FEMU and VFM. Therefore, this 
section also covers some typical tests designed for VFM. 
These designs could be directly transferred to FEMU tasks.

4.1  Heuristic‑Based Design

In the early development stage of FEMU, the samples are 
generally designed based on some guidelines instead of 
through a process of optimization. They are mostly designed 
by adding geometric features, such as holes or notches, to 
introduce richer strain states. These samples, while not 
optimal, still work well in the corresponding applications. 
According to the test configuration, these samples could be 
classified into uniaxial and biaxial tensile test samples, and 
other samples, such as three-/four-point bending samples, 
fracture test samples, Iosipescu test samples, etc.

4.1.1  Uniaxial Tensile/Compression Test

Uniaxial tensile/compression tests are still the most popular 
tests in inverse parameter identification tasks. This is mainly 
attributed to the wide availability of uniaxial tensile testing 
machines and the simplicity of test implementation. Dozens 
of sample geometries designed through a heuristic approach 
have been reported in the literature. A summary of these 
sample geometries and their applications is given in Fig. 13.

Table 5  Summary of typical material models used in FEMU studies
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4.1.1.1 Classical Geometries The most straightforward 
geometries are the classical samples used in conventional 
mechanical tests. Jungstedt et al. [59] used FEMU to deter-
mine all four independent elastic constants of orthotropic 
all-lignocellulose composites from a single 45◦ off-axis strip 
sample (Fig. 13a) via a uniaxial tensile experiment. Henr-
iques et al. [68] identified the orthotropic elastic parameters 
of wood [46] through a 60◦ off-axis uniaxial compression 
test. The four parameters are activated simultaneously in a 
single test, although their identifiability may not be optimal.

Rose and Menzel [105] identified the thermo-mechani-
cally coupled material model of aluminum alloy AW6016 
using the classical heterogeneous dog-bone-shaped sam-
ple (Fig. 13b). Shortening the gauge area can effectively 
increase the strain heterogeneity for inverse identification 
in the gauge region. Zhang et al. [201] used a standard dog-
bone sample to extract the post-necking hardening behavior 
from the diffuse necking in thick high strength steel. Bel-
habib et al. [240] also used this heterogeneous tensile test 
sample to calibrate the elastoplastic material model param-
eters of dual-phase steel. FEA shows that this test is a good 
compromise between the following three criteria: (i) large 
heterogeneity of the strain in the gauge area, (ii) large strain-
path diversity and (iii) good sensitivity of the strain field to 
the material parameters [240].

The dog-bone samples with arcuate notches (Fig. 13c) 
also have good strain heterogeneity. Conde [205] used such 
a sample to identify the three parameters in the Swift hard-
ening law of DP600 steel. Although the results of the iden-
tification are notably dependent on the initial guess of the 
parameters, these are still adequately calibrated through the 
tests. Similar sample geometry was also adopted by Jacquet 
et al. [241] to characterize the parameters in elasto-visco-
plastic material model. Güner et al. [103] used this geometry 
to calibrate the planar plastic anisotropy of sheet metals, 
where the flexible Yld2000-2D yield condition is used in 
the plasticity model.

The dog-bone geometry evolves into an hourglass sample 
(Fig. 13d) if the neck region is thin. This hourglass geometry 
can produce strain fields under uniaxial tensile test that are 
more heavily heterogeneous [39]. It will, however, lose some 
effective ROI on the sample surface. This sample geometry 
has served as the benchmark to explore the influence of user-
defined DIC parameters on the identification of isotropic 
elastoplastic material model parameters [39].

4.1.1.2 Perforated Geometries Adding hole(s) to the uniax-
ial tensile test samples is an effective strategy to enhance the 
strain heterogeneity. The perforated strip sample (Fig. 13e) 
has been used as the benchmark sample geometry when 
investigating the influence of different cost functions [242] 
in FEMU. Seon et  al. [51] used this geometry to identify 
the orthotropic elastic parameters of advanced polymeric 

composites. The calibrated parameters are in line with the 
ones measured through standard tensile tests in literature. 
The well identified elastic parameters further enabled the 
determination of the maximum interlaminar tensile strength 
from a 2D plane stress static FE analysis. Wang et al. [38] 
used this sample to identify the plastic anisotropy of DC06 
based on the Hill48 yield criterion. Compared with Erich-
sen test, this test revealed obvious identifiability differences 
for different parameters. They found that F and H are more 
reliably identified with the Erichsen specimen, while N  is 
more reliably identified with the perforated specimen. The 
dog-bone sample could also be modified with an open-hole 
(Fig. 13f) for FEMU. This geometry has been used to iden-
tify the elasto-plastic material properties of aluminum [48].

The aforementioned are sheet samples, which could be 
further generalized to a thick offset double perforated speci-
men [44] (Fig. 13g). The six parameters in the 3D Hill48 
yield surface of S690QL high strength steel can be identified 
by measuring the strain distribution on the front and thick-
ness surface simultaneously using a multi-view DIC system. 
The identification revealed that S690QL has negligible plas-
tic anisotropy. The thick sample can provide more informa-
tion for FEMU if the strain fields on different surfaces are 
properly measured.

4.1.1.3 Notched Geometries The notched geometries are 
the ones adopted by the pioneers in FEMU community [86, 
87]. In 1996, Mahnken and Stein used a single-side notched 
sample (Fig.  13h) to identify the exponential hardening 
model of a mild steel specimen [86].

The geometry with two asymmetric notches (Fig. 13i) 
was used in the other pioneering works [50, 87] of FEMU 
and VFM [243]. This non-standard shear-like geometry 
results in inhomogeneous stress- and strain-fields. It was 
used to determine the yield stresses of aluminum plates in 
the isotropic Von Mises and the orthotropic Hill yield cri-
terion. It was also adopted to calibrate the anisotropic elas-
tic plastic parameters of pure titanium material. A similar 
geometry was adopted by Meraghni et al. [244] to identify 
the fatigue damage model parameters for short glass fiber 
reinforced polyamide (PA6-GF30). Comparison tests vali-
dated that this non-standard shear-like geometry can produce 
better identification results than the perforated geometries 
and the standard strip geometry. This is mainly the result of 
the more significant strain heterogeneities [50].

Similar geometry with double semicircular notches 
(Fig. 13j) was investigated by Gajewski et al. [242]. They 
demonstrated that FEMU using this asymmetrical geom-
etry is quite suitable for plasticity parameter identification. 
Rossi and Pierron [245] used a uniaxial tensile specimen 
(Fig. 13k) with a symmetric circular-arc notch on each side. 
This sample was used to identify the plastic behavior of 
thick metal specimens (316L stainless steel) using VFM. 
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Fig. 13  Uniaxial tensile test samples designed by heuristic. The geometries shown here are schematic diagrams which do not preserve dimension 
information
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The plasticity behavior at large strains, including the post-
necking regime, was calibrated. The displacement fields on 
both surfaces of the specimen were measured simultane-
ously using two stereo-DIC systems. The heterogeneous 
volume displacement field inside the specimen was roughly 
estimated to describe the strain localization in the necking 
region for Swift law calibration.

4.1.1.4 Unconventionally Designed Geometries Besides 
the above, some unconventional geometries, such as 
“symmetric-face-shaped” [111] (Fig. 13l) and “ 

∑
-shaped” 

geometry [246] (Fig. 13m) are reported in literature. At first 
glance, these geometries look complicated. However, they 
yield highly heterogenous strain states and can therefore 
facilitate rather robust identification of the parameters for 
inverse identification.

The “symmetric-face-shaped” geometry was designed 
under the criteria of (i) a pronounced biaxial stress state 
at the center of the specimen and (ii) small stress or strain 
concentration [111]. This test enabled accurate identifica-
tion of the anisotropic plastic parameters in the advanced 
YLD2000-2d model.

Four typical geometries (Fig. 13c, m, n, o) were studied 
by Kim et al. [246] to calibrate the parameters in the ortho-
tropic Hill48 yield criterion with Swift isotropic hardening 
law, though with VFM instead of FEMU. It was found that 
the geometry in Fig. 13m can produce highly heterogeneous 
stress states. This geometry enabled successful identifica-
tion of the anisotropic plastic parameters. The geometry in 
Fig. 13n tends to buckle in the experiment. The geometry in 
Fig. 13o is interesting since it exhibits biaxial stress states 
in the central area between the two holes. The geometry in 
Fig. 13c, however, failed to permit simultaneous identifica-
tion of all the anisotropic plastic parameters. 

Starman et al. [247] proposed a new shear specimen 
(Fig. 13p) in a tensile test. It was used for the characteri-
zation of hardening at large plastic strains beyond necking 
initiation. This geometry can promote a shear response in 
two symmetrically located shear regions.

4.1.2  Biaxial Tensile Test

Applications like sheet metal forming are generally per-
formed under multi-axial strain paths with significant het-
erogeneous deformation [195]. To better approximate the 
real-world loading scenarios for more robust parameter 
identification, in-plane biaxial tensile tests that yield com-
plex strain paths are widely employed. Sheet specimens with 
cruciform geometries, perforated cruciform geometries, and 
three-branch geometry have been proposed for parameter 
identification. The typical biaxial tensile tests designed by 
heuristic are reviewed and summarized in Fig. 14. All these 
samples are loaded on all their arms simultaneously.

4.1.2.1 Cruciform Geometries The cruciform geometry 
is currently the most popular biaxial tensile test sample in 
use for parameter identification. Tomičević et al. [47] pro-
posed a cruciform geometry (Fig. 14a) to identify the elastic 
and nonlinear plastic parameters of graphite cast iron. The 
geometry they designed resembles a Maltese cross thinned 
in the center, allowing crack initiation in the center. The 
sample was loaded under different biaxial loading paths: 
“proportional” in-plane biaxial loading and “disproportion-
ate” in-plane biaxial loading.

In comparison, flat sheet samples permit easier appli-
cation, since they can be manufactured directly by laser 
cutting. Avril et al. [93] tested flat Maltese cross samples 
(Fig. 14a) of a composite consisting of a vinyl ester matrix 
reinforced with E-glass fiber in an equibiaxial manner. Dif-
ferent inverse identification methods were compared using 
this biaxial tensile test. A comparison of the identified elas-
tic moduli and Poisson’s ratios permits the evaluation of the 
identification performance.

Zhang et al. [248] adopted a slightly different cruciform 
geometry (Fig. 14b). This sample was used to identify the 
parameters in the Bron and Besson anisotropic yield model 
of various materials, including aluminum alloy series 5000 
[183], aluminum alloy AA5086 and dual phase steel DP980 
sheets [189]. A comparison study [162] revealed that prop-
erly adjusting the radius of the fillets on this sample can sig-
nificantly reduce parameter identification error by enhancing 
the strain heterogeneity.

In addition to the symmetric geometry, Schmaltz and 
Willner [42] investigated a centrosymmetric geometry 
(Fig. 14c). This sample was used to identify the anisotropic 
elasto-plastic model parameters of sheet steel. This geometry 
also produces a compressive stress in the biaxial tensile test. 
It does not, however, produce reasonable results in terms of 
the hardening curve identification. This could be due to the 
large concentrated tensile load on the thin cross sections 
where the radii of the slits are located [42].

4.1.2.2 Perforated Cruciform Geometries Adding an open 
hole in the middle of cruciform geometries can further 
enhance the strain heterogeneity. The perforated cruciform 
geometries usually have fillets in the corners to reduce strain 
concentrations. These fillets may have different shapes and 
dimensions, leading to performance variation in terms of 
inverse identification.

The geometry shown in Fig. 14d is a widely adopted 
design. Lecompte et al. [94], Cooreman et al. [207], Cop-
pieters et al. [249] and Garbowski et al. [250] adopted this 
design to calibrate the parameters within an orthotropic 
elastoplastic-hardening model of metal (DC06 steel [207]) 
or paper [250].

Martins et al. [162] proposed a perforated cruciform 
geometry with invaginated round fillets (Fig. 14e). This 
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geometry has been used to calibrate the classical Hill48 yield 
criterion and Swift’s hardening law. Their work compared 
the same geometry with and without an open hole in the 
middle. The perforated cruciform geometry leads to wider 
dispersion of strain and stress states. Consequently, it can 
lead to improved parameter identification accuracy [162].

Teaca et al. [251] proposed a non-standard cruciform 
specimen perforated at multiple locations (Fig. 14f). This 
design can provide a wide range of strain-paths and a high 
sensitivity to material anisotropy. It was used to calibrate an 
8-parameter anisotropic yield function [252]. Schmaltz and 
Willner [42] also proposed a perforated cruciform geometry, 
see Fig. 14g. The authors claimed that this geometry helps 
achieve a better convergence when compared to three other 
geometries, including the same geometry without the open-
hole and the one shown in Fig. 14c.

4.1.2.3 Three‑Branch Geometry The three-branch geom-
etry [253] (Fig.  14h) is not that commonly used. Instead, 
it was designed to apply biaxial loads by using a uniaxial 
tensile machine. Uniaxial tensile machines are much more 

accessible than the biaxial tensile machines. Therefore, the 
test can be easily conducted. To this end, they designed a 
new tensile apparatus which is fixed to one of the two col-
umns on the tensile machine. This apparatus can clamp and 
load the horizontal branch with a measurable displacement. 
The parameters in a Mooney hyperelastic model [254] of a 
carbon black filled natural rubber material were identified 
using VFM.

4.1.3  Other Tests

In addition to the commonly used uniaxial and biaxial tensile 
tests, there are others that produce complex strain states and 
are often feasible for inverse identification. The other tests, 
such as three-point/four-point bending tests, fracture tests, 
ring sample and Brazilian disk compression tests, Iosipescu 
tests and out-of-plane tests have also been explored by 
FEMU researchers. A summary of these tests is shown in 
Fig. 15.

Fig. 14  Biaxial test samples designed by heuristic. All samples are loaded along the branches. The geometries shown here are schematic dia-
grams which do not preserve dimension information. All the samples are stretched along all arms simultaneously
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4.1.3.1 Three‑/Four‑Point Bending Tests These tests are 
generally used for the identification of orthotropic elastic 
or viscoelastic parameters in a FEMU scenario, likely due 
to the simple sample preparation and test implementation. 
He et  al. [255] conducted a short beam three-point bend-
ing test (Fig. 15a) to calibrate the elastic modulus, Poisson’s 
ratio and nonlinear shear stress–strain relations of highly 
anisotropic composites. Their research revealed that the 
longitudinal Young’s modulus identification is more sen-
sitive to measurement noise in this test. Nsengiyumva and 
Kim [158] performed a three-point bending test to calibrate 
the homogenous elastic parameters of polyetheretherketone 
and viscoelastic parameters of a fine aggregate matrix with 
a bituminous binder. Similar test also helped Gras et  al. 
[164] to characterize the out-of-plane shear modulus of a 
layer-to-layer interlocked woven composite. The four-point 
bending test (Fig.  15b) can reduce the stress localization 
in the sample center close to the load pin compared to the 
three-point bending test. The strain field can therefore be 
measured more robustly in this region. Gao et al. [256] and 
Liu et al. [257] used this test in their work. Their aim was 
to determine the radial elastic modulus distribution of bam-
boo and the damage evolution parameters (related to elastic 
modulus evolution) of a graphite material, respectively. The 

four-point bending test has minimized shear stress, however, 
and is thus not a good candidate for shear modulus identi-
fication.

4.1.3.2 Ring Sample and  Brazilian Disk Compression 
Tests The ring sample compression test and the Brazil-
ian test are simple and established in experimental solid 
mechanics. Both tests can yield informative strain states for 
robust anisotropic parameter identification. Liu et al. [258] 
compressed a ring sample (Fig. 15c) to identify the heter-
ogenous parameter distribution in a graphite material. They 
evaluated material damage under complex stress states via 
this test. The Brazilian test has an interesting extra feature, 
namely the existence of a closed-form solution for displace-
ment calculation. It could be beneficial for improving the 
efficiency of parameter identification. Avril et al. [93] also 
employed the Brazilian test (Fig. 15d) on a polycarbonate 
sample to benchmark different inverse identification tech-
niques.

4.1.3.3 Iosipescu Test The Iosipescu test (Fig.  15e) is 
highly suitable for activating the shear strain response on 
the sample surface. It is a common test for inverse param-
eter identification, especially for orthotropic materials, e.g., 

Fig. 15  Other samples designed by heuristic: a three-point bend-
ing test, b four-point bending test, c ring sample compression test, d 
Brazilian disk compression test, e Iosipescu test, f four-point bending 

test of notched SENB specimen, g wedge-splitting tests and h out-of-
plane punching test. The geometries shown here are schematic dia-
grams which do not preserve dimension information
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composites. Avril et al. [93] used this test to compare the 
performance of FEMU, VFM and CEGM. The four in-plane 
elastic constants of orthotropic materials [93, 259], for 
instance a glass–epoxy unidirectional composite material, 
can all be robustly identified. This test performs better than 
the three-point bending test for the calibration of the out-of-
plane shear modulus of a layer-to-layer interlocked woven 
composite [164]. This can be attributed to the higher stress 
heterogeneity in Iosipescu test.

4.1.3.4 Fracture Tests Calibrating the fracture mechanics 
parameters is a major task in the characterization of brit-
tle or quasi-brittle materials. Four-point bending tests of a 
notched SENB specimen and wedge-splitting tests have been 
widely used. Shen et al. [217, 226] used CZM to simulate 
the fracture of PMMA. The CZM parameters were deter-
mined using FEMU via a four-point bending test of SENB 
(Fig. 15f). The WST (Fig. 15g) adopted by Vargas [19, 71, 
224] ensures stable crack propagation in fracture tests by 
decreasing the elastic energy stored in testing machine, 
since the opening (mode I) load is applied by a wedge and 
a pair of cylinders. This test was used to identify the CZM 
parameters for a class C, anti-erosive commercial refractory.

4.1.3.5 Indentation Tests Indentation tests are commonly 
used to study the mechanical properties of a material by 
pressing an indenter tip into the sample surface. The inden-
tation tests employed in inverse parameter identification 
tasks can use various indenter tips, such as the spherical 
indenter tip [175], the Berkovich indenter tip [260, 261], 
and the Vickers micro-indenter [262]. Chen et  al. [175] 
identified the hyperelastic parameters of silicone rubber 
from the load-depth data in a macroindentation test using 
FEMU. Sun et al. [262] used microindentation to calibrate 
the heterogeneous elastoplastic property distribution near 
the weld line region.

Barick et al. [260] and Gebhardt et al. [261] carried out 
a nanoindentation test instead. Barick et al. [260] identified 
the four-parameter viscoelastic law with constant Poisson’s 
ratio for polypropylene using the load-depth curve infor-
mation. Gebhardt et al. [261] made use of the strain fields 
measured by DIC to identify the elastic and plastic model 
parameters for ferrite. Satošek et al. [263] used ball indenta-
tion to inversely identify the out-of-plane shear parameters 
of the Yld2004-18p yield function.

4.1.3.6 Out‑of‑Plane Tests The out-of-plane tests can 
potentially better mimic the strain states occurring in an 
actual metal forming process, though at the cost of more 
sophisticated test implementation. It must be noted that 
plane stress conditions generally still prevail in out-of-plane 
tests. Pottier et al. [264] proposed a typical out-of-plane test 
(Fig.  15h) to calibrate an elastoplastic material model. A 

hemispherical punch imposed out-of-plane displacement in 
the middle of the specimen. The specimen exhibits signifi-
cantly heterogeneous strain paths, including tensile, shear 
and expansion behaviors. The deep-drawing experiment 
was compared with the numerical simulation based on the 
identified parameters. The results confirmed that out-of-
plane tests can calibrate the parameters with better accuracy 
than in-plane tests. Souto et al. [265] reevaluated this test 
to assess a geometry design indicator for inverse parameter 
identification.

4.2  Optimization‑Based Design

In optimization-based design methods, optimal tests are 
designed by iteratively optimizing certain qualitative or 
quantitative criteria. Different qualitative or quantitative 
optimization indicators lead to various optimization-based 
designs. The test can be designed based on stress and strain 
states, sensitivity analysis or the simulated full identification 
workflow.

Maximizing an indicator based on stress and strain heter-
ogeneity is a simple and straightforward way to design a test. 
However, it is not directly related to parameter identification 
performance. Sensitivity analysis can help in designing a 
test with good parameter identifiability. By simulating the 
full identification workflow, the errors in all steps, includ-
ing DIC matching, can be adequately accounted for. A test 
design with good parameter identification accuracy can thus 
be obtained. Figure 16 presents a summary of the major 
methods of optimization-based test design.

4.2.1  Design Based on Stress and/or Strain States

This type of test is generally designed based on the stress 
and/or strain distribution on the sample surface. FEA can 
simulate stress and strain maps, given the model and the 
model parameters. The designs should satisfy several criteria 
related to the stress and/or strain states. The most impor-
tant criterion is a high stress and/or strain state heteroge-
neity. In this review, we classify those design approaches 
into trial-test design based on qualitative criteria, iterative 
optimization-based design using performance indicators, 
and topology-optimization-based design. The major design 
criteria and the designed tests are reviewed hereafter.

4.2.1.1 Trial‑Test Design Based on Qualitative Criteria The 
most straightforward way designs the sample geometry 
through simulated trial tests using some qualitative criteria.

Jones et al. [266, 267] proposed a ‘D’-shaped geometry 
(Fig. 16) for a uniaxial tensile test. The design procedure 
starts from engineering experience. The geometry is then 
manually refined based on FEA results using the following 
criteria:
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Fig. 16  Optimization-based sample designs. The geometry shown here are the schematic diagrams which do not preserve dimension information
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 (i) Maximizing the stress heterogeneity.
 (ii) Maximizing the range of strain rates.
 (iii) Minimizing the large gradients in stress or strain near 

sample edges.
 (iv) Restricting the geometry to be planar while prevent-

ing buckling.

Prates et al. [195, 206] designed a cruciform specimen 
(Fig. 16) based on the following rules:

 (i) Maximizing the coverage of strain paths that occur 
in real-world applications.

 (ii) Maximizing the strain level in the center of the speci-
men.

 (iii) Minimizing the stress concentration in the fillet 
region.

 (iv) Yielding a smooth gradient of the ratio between the 
maximum and minimum principal strains on the 
specimen arms.

These tests are expected to perform better than the heuristic-
based designs, although the optimization is not fully auto-
matic. This is attributed to, firstly, the more detailed design 
criteria. Additionally, tests with different geometry param-
eters are tried and compared following these rules.

4.2.1.2 Iterative Optimization‑Based Design Using Perfor‑
mance Indicators In the iterative optimization-based design 
method, the geometry is designed by iteratively refining a 
set of shape parameters. Usually, a quantitative identifica-
tion performance indicator is formulated as the cost function 
for geometry optimization.

The first attempt to optimize the sample geometry with 
iterative parameters optimization is from Grédiac et al. [88, 
268] in the late 1990s. They designed a ‘T-shape’ specimen 
(Fig. 16) submitted to both tension and bending loading. The 
horizontal short beam on this ‘T-shape’ specimen is mainly 
subjected to bending load. It can activate the horizontal 
Young’s modulus and the in-plane shear modulus. The ver-
tical bar on the ‘T-shape’ sample is used to impose a tensile 
load for longitudinal modulus activation. This ‘T-shape’ 
geometry is governed by four independent dimensional 
parameters (lengths and widths of the horizontal and verti-
cal bars). The optimal geometry can be found by searching 
in the four-parameter space to minimize the following cost 
function.

This cost function is related to strain heterogeneity, where 
−
�x , 

−
�y , 

−
�s are the averages of the horizonal strain �x , ver-

tical strain �y and shear strain �s in area 1, 2, 3 (Fig. 16), 
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respectively. This optimized ‘T-shape’ geometry was used 
for the identification of the four in-plane elastic parameters 
of orthotropic composite plates using VFM. The identified 
material model parameters showed good accuracy with 
acceptable deviation from the reference value.

The aforementioned indicator is proposed specifically 
for designing ‘T-shape’ specimens. It may not be versatile 
enough to be useful for the other tests. A desirable indicator 
should facilitate fair evaluation in various kinds of tests and 
materials. In the scenario of sheet metal parameters identi-
fication, one of the most successful applications of FEMU, 
Souto et al. [265] proposed to design the sample geometry 
by considering the following criteria:

 (i) Favoring tests that cover a larger range of strain states 
with a minor number of gaps.

 (ii) Promoting tests with significant deformation hetero-
geneity.

 (iii) Increasing the maximum strain achieved for the most 
important strain states.

 (iv) Preferring large average strain values.
 (v) Continuously evaluating the indicator up to rupture.
 (vi) Promoting the uniqueness of the identification 

results.

Taking these considerations into account, they proposed a 
new indicator to distinguish, rate and rank different mechani-
cal tests, see Eq. (15):

Each term in this indicator denotes a constraint for 
the geometry optimization. This indicator is explained as 
follows:
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uniaxial tension, pure shear, equibiaxial tension, uni-
axial compression, plane strain tension).

(v) Av−
�
p : the average deformation in the test, which indi-

cates the global level of deformation imposed during 
the test.

where ‘Mean()’ is the average operator and ‘Std()’ the stand-
ard deviation operator. The weighting factors Wa1−a5

 repre-
sent the maximum possible value of each term. They could 
be selected as 1, 4, 0.25, 0.8 and 0.4, respectively [190]. The 
relative weighting factors Wr1−r5 are specified according to 
the importance of each term in the indicator. One possible 
set of values is given as 0.13, 0.02, 0.24, 0.35, 0.25 [190].

This indicator serves as the foundation for optimal 
test selection and design in a series of research advance-
ments. The same group proposed two different optimization 
approaches for designing heterogeneous mechanical tests on 
virtual thin metallic sheets (described by an Yld2004-18p 
yield criterion combined with a mixed isotropic-kinematic 
hardening law) with the aid of this indicator [190]. The first 
approach is a one-step procedure. It is used to design both 
a symmetric specimen shape (parameterized by 7 control 
points) and a biaxial loading path using rigid tools. The sec-
ond approach is a sequential incremental technique in which 
the specimen geometry and the load paths are designed by 
considering local displacements (at 7 points, different from 
the first approach). In the second approach, the following 
aspects are sequentially designed: (i) initial specimen shape, 
(ii) boundary conditions by means of local displacements 
and (iii) a complex loading path. Two geometries were opti-
mized with the two different methods. The indicator sug-
gests that the test with the complex loading path can provide 
richer strain information than the one with only a biaxial 
loading path.

Due to the simplicity of the boundary condition, the 
first approach was also adopted to optimize the geometry 
and boundary in an uniaxial tensile test [269]. The design 
started from an initial circular geometry. The optimization 
procedure iteratively reached a butterfly-shape uniaxial ten-
sile sample (Fig. 16). The effectiveness of the designed test 
was validated in a real experiment. It identified the material 
model parameters of mild steel DC04 material. The material 
is described by the non-quadratic Yld2004-18p yield crite-
rion combined with a mixed isotropic-kinematic hardening 
law [193, 270]. The designed test was also used for cali-
brating the post-necking hardening behavior of sheet metal 
DC05. An anisotropic model composed of the Hill48 yield 
criterion and Swift’s hardening law [185] was assumed for 
the material.

Apart for this complicated test, uniaxial tensile strip sam-
ples with interior or exterior notches were also designed 
based on this indicator. Conde et al. [46, 205, 271] obtained 
different interior-notched samples (Fig. 16) by applying 

various geometry constraints, such as the aspect ratio of the 
sample, a varying initial interior notch, and a combination of 
the optimal geometries. Zhang et al. [186], instead, proposed 
a uniaxial tensile sample with a notch on each edge (Fig. 16) 
using the same indicator to iteratively maximize the strain 
heterogeneity.

The indicator could be slightly modified to analyze the 
stress states by including the triaxiality factor.

where TF = �H∕�eq , (TF)R = (TF)max − (TF)min and �H is the 
hydro-static stress. Thoby et al. [106] evaluated four differ-
ent geometries for anisotropic mechanical behavior identi-
fication based on this indicator.

4.2.1.3 Topology‑Optimization‑Based Design Sigmund, et. 
al used topology optimization [272] to design the geometry 
of a specimen subjected to a uniaxial tensile test [273–276]. 
The objective is to find a specimen shape that offers a broad 
heterogeneous strain and stress state. They investigated 
different cost functions (traditional stiffness-based cost 
functions, along with multi-objective approaches mixing 
mechanical stability) and different optimization strategies to 
design specimens with high levels of heterogeneity. Topol-
ogy optimization can provide a large design space and is 
very powerful in the structural optimization field. The team 
designed several complicated geometries. The technique, 
however, may impose a prohibitive computational burden 
and can sometimes generate unmanufacturable geometries.

4.2.2  Design Based on Sensitivity Analysis

Sample design strategies based on high strain and/or stress 
heterogeneity are useful for simultaneously identifying 
multiple parameters. However, since the stress and strain 
are intermediate variables in parameter identification, it is 
attractive to move one step forward by considering the sen-
sitivity of the displacement or strain fields to each unknown 
parameter [277].

The earliest attempts at designing geometry by using 
sensitivity analysis are probably from Bos et al. [278] and 
Magorou et al. [279]. They aimed to simultaneously identify 
the elastic and viscoelastic mechanical characteristics (bend-
ing/torsion) of an embedded wood-based panel. To guaran-
tee a good identification result, the bending frame size, the 
embedding positions, and the positions and the intensities of 
the applied stresses are optimized. In their work, the indica-
tor related to the relative sensitivity of the displacement field 
to each parameter pk is defined as
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where ‖⋅‖
2
 is the Euclidean norm operator. When multiple 

parameters are identified, an increased identifiability of one 
parameter may lead to a decrease in the identifiability of the 
other one. It is therefore necessary to choose a fair standard 
as the cost function. A good way is to iteratively optimize 
the geometry by maximizing the smallest sensitivities to all 
parameters via FEA.

This concept is emphasized by Bertin et al. [40]. They 
further considered the DIC measurement uncertainty and 
the force uncertainty. The covariance matrix (equal to the 
inverse of the Hessian matrix) of the identified parameters 
due to image noise and force noise can be calculated. The 
geometry is then optimized by seeking the largest level of 
the smallest eigenvalue of the Hessian matrix. With this 
technique, the authors designed a cruciform specimen geom-
etry (Fig. 16) with four fillets in the corners. The sensitivity-
based cost function can also be combined with topology 
optimization under volume fraction constraints [280] or non-
invasive computer-aided design (CAD) inspired optimiza-
tion strategy [280] for test design.

4.2.3  Design Based on Simulated Full Identification

In FEMU, particularly classical FEMU, the DIC parameter 
settings, such as the subset size, the shape function, and the 
virtual strain gauge size, etc., significantly affect identifica-
tion accuracy. The test design strategies mentioned previ-
ously do not take these error sources into account.

The design approach, which is based on full identifica-
tion, has favorable accuracy. It involves first calculating 
the displacement maps using FEA with a set of predefined 
material model parameters. The displacement maps enable 
the generation of a set of virtual speckle or grid pattern 
images. FEMU can identify the material model parameters 
from these virtual images. The errors between the identified 
parameters and the predefined material model parameters 
can indicate the quality of the test design.

Rossi and Pierron [281] designed a Iosipescu test (see 
Fig. 15e) to identify the orthotropic plastic properties of 
composites. The fiber angle and a geometry parameter are 
the two design variables for the Iosipescu test. They pro-
posed an indicator IT based on the identification accuracy to 
quantitatively assess the test design:

where p
(0)

k
 and p

(i)

k
 are the k-th reference and identified 

parameter at i-th test; Ne refers to the number of tests; M 
denotes the number of the material model parameter and �k 
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is the weight used to control the importance of each param-
eter in test design. Minimization of this indicator yields an 
optimized test design.

This indicator reflects only the systematic error of the 
identified parameters. In a further development by Gu and 
Pierron, both systematic error and random error of the iden-
tified parameters [282] were combined into a single indica-
tor, which is written as

where pk and �pk
 represent the identified parameter and 

the standard deviation of the identified parameter from 30 
repeated identifications, respectively. This indicator is used 
to design the test for calibrating all the stiffness components 
of orthotropic composite materials using VFM. Four dif-
ferent tests were optimized and compared on the basis of 
this indicator. The four test configurations are short off-axis 
tensile test (Fig. 13a), short off-axis open-hole tensile test 
(Fig. 13e), Brazilian disc (Fig. 15d) and off-axis unnotched 
Iosipescu test (Fig. 15e), with certain design variables. They 
concluded that the short off-axis open-hole tensile specimen 
presents the best identification results.

4.3  Discussion on Test Design

The optimal sample geometry is highly dependent on the 
material, the material model and the material model param-
eters involved [42]. This entails a chicken-or-egg paradox. 
To accurately identify unknown material model parameters, 
the test needs to be designed based on a reliable estimation 
of the material model parameters, which is difficult prior 
to their identification. This review cannot offer a recom-
mendation of a universal test design. There are various 
sound approaches to this dilemma, e.g., designing the test 
according to the material properties found in the literature 
or obtained through trial tests, or adopting the optimal test 
designs for similar materials. Even though, we can still 
try to design a serviceable test that will ensure adequate 
(though not optimal) performance for a given material in 
most scenarios.

Some geometries, while exhibiting high sensitivity to 
the material parameters in principle, might be impractical. 
Complex sample geometry may lead to high strain gradients. 
Measuring strain fields using DIC may result in relatively 
large errors when the strain gradient is high. Too many 
open holes in the sample may reduce the size of the effec-
tive measurement region. This is especially significant when 
subset-based DIC is used, where the regions near the ROI 
boundary are generally not measured. The manufacturing 
difficulty and accuracy of the designed geometry should also 
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be considered. We should therefore be wary of choosing an 
overly complex geometry.

The various material model parameters are not all equally 
important in a particular application. The most crucial mate-
rial model parameters are expected to be identified with bet-
ter accuracy, which necessitates designing the tests in con-
junction with the final applications. The test design should 
match as close as possible to real life conditions to avoid 
extrapolations and uncontrolled discrepancies in material 
model calibration [227].

5  Kinematic Fields: Experimental 
Measurement and Numerical Simulation

Kinematic fields (displacement and strain fields) are the 
major inputs for FEMU. Robust inverse parameter identi-
fication requires rich, accurate and precise kinematic field 
information, though in certain applications only load–dis-
placement curve is used [283]. In FEMU, the displacement 
and/or strain fields are usually measured by 2D-DIC [284], 
stereo-DIC, multi-view DIC, grid method, DVC, etc. These 
experimentally measured kinematic fields should be com-
pared with the numerically simulated ones. This section 
provides a brief overview of the major kinematic field meas-
urement techniques used in FEMU. The key issues affecting 
numerical simulation are also reviewed.

5.1  Experimental Measurements

In the early development stage of FEMU, various full-field 
measurement techniques were employed, such as DIC, ran-
dom access video tracking [87], projection Moiré [179], 
electronic speckle pattern interferometer [285] and grid 
methods. In the last two decades, DIC techniques have 
become more accessible, easier-to-use, and more efficient. 
They are now the de facto standard kinematic field meas-
urement techniques in FEMU. Several open-source DIC 
software tools (Ncorr [286], DICe [287], py2DICN [288], �
DIC [289], OpenCorr [290], MultiDIC [291], etc.), as well 
as commercial products (VIC [292], MatchID [293], DaVis 
[294], ARAMIS [295], DIC Elite [296], Istra4D [297], Cor-
reli [298], etc.) are available. They can assist the researchers 
with strain measurement and, of course, inverse parameter 
identification.

In this section, multiple full-field deformation measure-
ment techniques will be briefly reviewed along with their 
applications in FEMU. The focus is on the DIC-based 
techniques, i.e., 2D-DIC (local DIC, finite element-based 
global DIC, meshfree DIC), stereo-DIC, multi-view DIC, 
and digital volume correlation (DVC). Some special DIC 
techniques that are particularly suited for the identification 
of more challenging models are also reviewed. The special 

DIC techniques reviewed here are high-speed DIC, high-
temperature DIC, micro DIC and multi-scale DIC, as well 
as discontinuous DIC. A summary of the typical DIC-based 
full-field measurement techniques along with their pros and 
cons is given in Table 6. Some other non-DIC-based meas-
urement techniques and their usage in FEMU are also briefly 
reviewed. These non-DIC-based measurement techniques 
include the grid method, Moiré Interferometry, etc.

For more information about DIC, we refer the readers 
to the book from Sutton et al., [82], the pioneers of DIC 
technique. That book covered the principal details of DIC, 
together with error estimation, applications, and practical 
considerations. International Digital Image Correlation soci-
ety (iDICs) also produced a very detailed practice guide for 
DIC [121] that is a must-have reference for all DIC users.

5.1.1  2D‑DIC

Two-dimensional digital image correlation (2D-DIC) [80] 
is an optical technique for full-field in-plane deformation 
measurements in planar samples using a single camera, see 
Fig. 17. The test sample should first have a high-contrast 
random speckle pattern applied [124], which will serve as 
the carrier of deformation information. A camera should 
be fixed to perpendicularly view the whole sample surface. 
During the loading process, the camera captures a set of 
high-contrast and low-noise images of the sample surface. 
Matching the images captured before the deformation to 
those taken afterwards using an image correlation algorithm 
yields the full-field displacement fields. The strain fields 
can then be obtained with some post-processing techniques 
[126]. In some cases, a further filter can be applied to the 
measured displacement or strain fields (only when the gradi-
ent is small) to reduce the noise. Azzouna et al. [299] shows 
that the filtering can be beneficial for better parameter iden-
tification, while the filtering of the simulated data may not 
be beneficial. Based on the different algorithms, 2D-DIC can 
be primarily classified into local DIC, finite element based 
global DIC (FE-DIC) [300, 301], and the recently proposed 
meshfree DIC (MF-DIC) [302, 303].

Local DIC [121, 284] (Fig. 17b) is carried out by first 
selecting a region of interest (ROI, the blue region in 
Fig. 17b) on the reference image (the image captured before 
deformation). This is followed by specifying a grid of 
points of interest (POIs, the red dots in Fig. 17b) in the ROI. 
Each POI (see the red cross in Fig. 17b) is matched to the 
deformed image independently solely by using the image 
intensity information in a small subset surrounding it. The 
matching of a subset is based on the assumption of image 
intensity conservation within each subset. The deformation 
in a small subset, in most cases, is assumed to be continuous. 
It can be described by a continuous first- or second-order 
polynomial shape function.
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FE-DIC (Fig. 17c) first generates a mesh (the red mesh) 
on the reference image. The nodes (the red dots in Fig. 17c) 
of the mesh are the POIs. All POIs are then matched to the 

deformed image simultaneously by utilizing all the image 
intensity information in the ROI. The deformation within 

Fig. 17  Schematic diagram of a 2D-DIC. a 2D-DIC setup and b–d principal diagrams of different DIC algorithms: b local DIC, c FE-DIC and d 
MF-DIC

Table 6  Comparison of different DIC-based kinematic field measurement techniques

Method Application scenario Advantages Disadvantages

2D-DIC [19, 56, 258, 306] In-plane surface deformation meas-
urement of planar samples

Easy to use
Good accuracy

In-plane measurement of planar 
sample

Huge error from out-of-plane 
translation

Stereo-DIC [38, 178, 337] 3D surface deformation measurement 3D surface measurement
Easy to use
Good accuracy

Needs additional camera calibration
No through-thickness strain infor-

mation
Multi-view DIC [44] Multiple-surface/panoramic/through-

thickness measurements of compli-
cated sample surfaces

3D surface measurement
Rich information on several surfaces
Good accuracy

Expensive
Difficult to calibrate

Digital volume correlation 
[223, 334, 336]

3D internal deformation measure-
ment

Internal 3D measurement
Rich information

Highly expensive
Requires internal random features
Quasi-static measurement
Time-consuming
Computationally expensive
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the ROI is constructed by a shape function from the whole 
mesh, as in FEA.

MF-DIC [302, 303] (see Fig. 17d) is inspired by the 
meshfree method [304] in computational mechanics. It 
starts by generating a set of scattered nodes (the red dots 
in Fig. 17d) instead of a mesh on the reference image. A 
C1-continuous shape function at any point is constructed 
from the scattered nodes. Only the nodes in a small sup-
port domain (Fig. 17d) surrounding to a point contributes to 
the shape function construction of this point. In the support 
domain, the nodes closer to the calculation point have more 
weight (see the weight shape in Fig. 17d) for constructing 
the shape function. This is helpful to reduce the systematic 
error in shape function. The MF-DIC algorithm is a global 
DIC algorithm with a C1-continuous shape function, which 
means that strain fields can be analytically calculated from 
the displacement fields.

Local DIC has the advantages of high efficiency and good 
balance between spatial resolution and measurement resolu-
tion [305]. It is the mainstream in both academic research 
and engineering applications [237]. Next is FE-DIC, with 
the major benefit that it employs the same mesh genera-
tion and shape function construction approach as FEA and 
can therefore help to bridge the gap between computational 
mechanics and experimental mechanics. This advantage is 
especially attractive in the scenario of FEMU. Similarly, 
MF-DIC benefits from being closely related to the mesh-
free method in computational mechanics. Additionally, it 
exhibits an excellent balance between spatial resolution and 
measurement resolution compared to the state-of-the-art 
DIC algorithms [303].

2D-DIC is one of the most popular deformation meas-
urement techniques in FEMU [209], reason being that the 
samples are mostly flat sheet samples subjected to in-plane 
loading (uniaxial tensile, biaxial tensile, three-/four-point 
bending, fracture test, etc.). Additionally, 2D-DIC features a 
good balance between cost, simplicity, efficiency, measure-
ment resolution and spatial resolution. Finally, perpendicular 
image recording can reduce the effort required to align DIC 
and FEA data. In most cases and applications, local DIC can 
be used [92, 158, 256]. FE-DIC can be adopted in general 
applications [306], in fracture parameters identification [19, 
307], and has been used in some studies to avoid informa-
tion loss near the sample edge [258]. Vargas et al. [56] also 
used FE-DIC to detect the crack path in a mortar sample 
by resorting to the correlation residuals. The detected crack 
path enables better determination of the CZM parameters.

It must be noted that 2D-DIC can only measure in-plane 
deformation of planar samples. A small out-of-plane move-
ment along thickness direction may lead to considerable 
in-plane strain error [308]. A highly recommended way to 
eliminate the strain error from out-of-plane translation is to 
replace the conventional pinhole camera with a telecentric 

lens [308, 309]. An alternative way is to compensate the out-
of-plane displacement effect in the cost function in FEMU 
[310].

5.1.2  Stereo‑DIC

Stereo digital image correlation (Stereo-DIC, referred to 
also as 3D-DIC) [311, 312] is a technique to measure the 
3D surface deformation of curved samples. It is based on 
binocular stereovision [313] and image matching. In this 
method, the speckled sample surface is simultaneously cap-
tured from two different views before and after deforma-
tion. The disparity fields between the two views in all states 
are measured using spatial matching. They are used for 3D 
surface shape reconstruction [314] after an accurate stereo-
vision calibration [315, 316]. The 3D surface displacement 
fields are tracked using temporal matching [317] among the 
images captured by one camera. Local DIC, FE-DIC, and 
MF-DIC algorithms can all be easily generalized to stereo 
DIC, with their typical features being preserved.

The stereo-DIC system generally involves two synchro-
nized cameras. A more affordable alternative is the single-
camera stereo-DIC system [318]. The single-camera stereo-
DIC splits the view of a single camera into two views using 
some view-splitting setups, such as a four-mirror system 
[319] or biprism [320]. It therefore provides the disparity 
required for stereo-DIC measurements. The single-camera 
stereo-DIC system may sacrifice in spatial resolution and 
measurement accuracy. However, it benefits in several 
aspects. First and most importantly, it is cost friendly and 
easy to implement. It can also avoid the camera synchroni-
zation issue [321] in dynamical measurement by using only 
one high-speed camera.

In most cases, the aim of stereo-DIC application is to 
provide a more accurate measurement, even when only in-
plane deformation is needed [42, 200]. The enriched shape 
and displacement information along the third dimension 
is useful, especially in parameter identification tasks that 
require out-of-plane displacement fields. For instance, Wang 
et al. [38] proposed a stereo FEMU approach that integrates 
stereo-DIC into FEA for anisotropic plastic parameters 
identification from a common 3D Erichsen bulge test. The 
identified parameters agree well with the parameters fitted 
from standard uniaxial tensile tests. Pottier [264] identi-
fied the orthotropic elastoplastic material parameters from 
a hemispherical punch test on a specially designed sample 
geometry. In this task, the out-of-plane displacement field 
measured by stereo-DIC is the key part of parameter identi-
fication. Another parameter identification task that requires 
stereo-DIC is indentation. It has been used to identify the 
hyperplastic parameters of rubber [178] and soft tissues 
[118].
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5.1.3  Multi‑view DIC

Stereo-DIC can only measure a small part of the sample 
surface. In some cases, the enriched deformation informa-
tion at different parts of the sample surface is of interest in 
inverse parameter identification, in which case, multi-view 
DIC [322, 323] that involves more than two cameras (or 
virtual cameras) can be adopted. The multi-view DIC can 
simultaneously measure several different parts of the sam-
ple surface from multiple views. Rossi et al. [245] proposed 
simultaneously measuring the displacement on the front 
and back surface of a sheet metal sample using two stereo-
DIC systems, respectively. The volume displacement field 
inside the specimen was reconstructed using interpolation 
from the displacement field measured on the two surfaces. 
The volume displacement fields enable more accurate cali-
bration of the hardening parameters of Swift's law. Denys 
et al. [44] used two stereo-DIC systems to simultaneously 
measure the deformation on the front and thickness surfaces 
of a thick sample. Much richer deformation information 
can be simultaneously obtained in lateral, longitudinal, and 
through-thickness directions. The 3D anisotropic yield sur-
face of thick S690QL high strength steel specimen can thus 
be identified with better accuracy.

The most significant limitations of multi-view DIC are 
the high cost, complex synchronization, and the difficulty 
of calibrating the multi-camera system. A recent develop-
ment is the mirror-assisted multi-view DIC technique [324], 
which brings a cheap, simple and accurate alternative to the 
standard multi-view DIC. Mirror-assisted multi-view DIC 
uses only a standard two-camera stereo-DIC system and two 
mirrors. The implementation complexity and cost are almost 
the same as a single two-camera stereo-DIC system. This 
technique can effectively measure panoramic shape, dis-
placement and strain fields in a global coordinate system. It 
has been used successfully to measure the panoramic shape 
deformation of cylindrical bar samples [325, 326], in-vivo 
human arm [327], and cubic wood aerogel [328]. It was also 
used to measure the dual-surface [329] and through-thick-
ness [330] deformation of sheet samples. We believe it can 
contribute to the parameter identification by providing an 
extra through-thickness strain field and volume strain infor-
mation, in a simple and accessible way.

5.1.4  Digital Volume Correlation

2D-DIC and stereo-DIC provide only the deformation and/or 
shape information on sample surface. However, the surface 
deformation may not be fully representative of the sample 
deformation with significant heterogeneity inside. This limi-
tation is particularly obvious when studying the 3D local 
interactions of complicated composite materials. An attrac-
tive option for mitigating this issue is DVC [331], which 

can measure the 3D internal displacement or strain fields. 
DVC is a direct generalization of 2D-DIC from 2D space to 
3D space. It measures the internal 3D kinematic fields by 
matching the volume images of a sample before and after 
deformation.

One of the most challenging tasks in DVC is to get high-
quality volume images with rich, low-noise, and random 
contrast distribution. The image contrast, in most cases, 
is from the random microstructure inside the materials 
themselves, which might be unsatisfactory in a lot of cases. 
The volume images could be recorded by X-ray Computed 
Tomography [331], magnetic resonance imaging [332], etc. 
The DVC algorithm for volume image registration can be 
directly extended from 2D-DIC to 3D space. The extra data 
dimension generally demands much more computational 
time, which could be effectively accelerated by using paral-
lel computing [333].

DVC measurement is of great value for more accurate 
inverse parameter identification. It is especially beneficial 
for the identification of heterogeneous materials. The DVC 
measurement can contribute in the form of (i) a high-accu-
racy microstructure model for FEA; (ii) Dirichlet displace-
ment boundary condition for FEA; (iii) the internal deforma-
tion information of heterogeneous material.

Vargas et al. [223] proposed to use DVC to track the 
realistic crack surface inside an alumina castable refractory 
with mullite-zirconia aggregates in a WST. The crack path 
is inputted into a PPR CZM model to numerically simulate 
the mechanical response of the sample. In FEMU, the cost 
function was constructed from the difference of the numeri-
cally simulated kinematic fields and the DVC-measured 
kinematic fields. By iteratively minimizing the cost func-
tion, the cohesive strength and fracture energy in the CZM 
can be effectively identified. The parameters thus identified 
have a nonnegligible difference compared to the parameters 
identified under the assumption of a flat crack surface. This 
result demonstrated the necessity of accurate internal crack 
surface detection with DVC.

Hachem et al. [334] used DVC to measure the 3D defor-
mation of a wood sample between wet and dry conditions 
with the aim of characterizing the microscopic hygro-
mechanical property of spruce wood. DVC not only provided 
the experimental displacement fields in the cost function, but 
was also used to extract the Dirichlet boundary condition for 
numerical modeling. Chen [335] identified the non-linear 
elastic properties of a small graphite specimen by using the 
3D displacement fields measured by DVC. The displacement 
fields measured by DVC are also used in other FEA. Buljac 
et al. [336] conducted in-situ microscale DVC measurement 
of a spheroidal graphite cast iron material. The DVC meas-
urement can yield a realistic microstructure model, the Dir-
ichlet boundary condition, and the 3D displacement fields 
in the cost function of FEMU. The plastic behavior of the 
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ferritic matrix, modeled by Ludwik's law and Von Mises 
yield criterion, was calibrated via integrated DVC [336]. The 
ductile damage mechanism can be analyzed through numeri-
cal simulation based on the realistic 3D model.

5.1.5  Special DIC

The advanced DIC technologies, combined with special-
ized photography equipment and/or specifically designed 
algorithms, can push the limits of DIC to enable more chal-
lenging parameter identification tasks. These specialized 
DIC techniques increase the potential of FEMU to identify 
more challenging material models. High-speed photography, 
for instance, enables DIC for dynamic measurements. The 
ability to produce high-contrast and stable speckle pattern 
images facilitates the implementation of high-temperature 
deformation measurement. Microscopic deformation can 
be measured using in-situ microscopic tests, if high-quality 
(sharp, high contrast, low noise and with random speckle 
pattern) microstructure or nanostructure images are cap-
tured. Another challenging task is the identification of frac-
ture properties. In this case, the discontinuous deformation 
fields can be measured by modifying the continuous DIC 
algorithm. Here we focus mainly on high-speed DIC, high-
temperature DIC, micro- multi-scale DIC, and discontinu-
ous DIC. Constitutive parameter identification using these 
special DIC techniques is also reviewed.

5.1.5.1 High‑Speed DIC DIC techniques based on high-
speed photography [ranging from tens to millions of frame 
per second (fps)] can help to capture the transient mechani-
cal response [338, 339]. The challenges of high-speed DIC 
are mainly the high-cost and difficulty for camera synchro-
nization in stereo-DIC, which could be partially improved 
by the single-camera stereo-DIC [312]. The other challenge 
is the large data including thousands to millions of images. 
Data compression technique can help on saving the data 
[340].

Kajberg and Wikman [341] calibrated the viscoplastic 
material parameters of a mild steel at high strain-rates. The 
dog-bone shaped specimens were exposed to compression 
loading in a split Hopkinson pressure bar arrangement. 
The speckle pattern images were recorded by a high-speed 
camera at a frame rate of 100,000 fps. Louar et al. [122] 

identified the strain rate hardening model parameters for in-
plane tensile and shear strengths of glass fiber reinforced 
epoxy from the dynamic response measured by a high-speed 
stereo-DIC system. The identification showed an increase 
of tensile and shear strengths with the strain rate, which 
matches well with the literature. Janin et al. [342] charac-
terized adhesive joints under multiaxial and dynamic loading 
conditions. Displacement jumps at the adhesive center are 
measured by high-speed DIC. Spranghers [343] employed 
a high-speed stereo-DIC system to measure the dynamical 
deformation of aluminum plates subjected to a sudden blast 
load at a frame rate of 25,000 fps. Three rate-dependent plas-
ticity models were calibrated on the basis of the discrepancy 
between the DIC-measured displacements and their numeri-
cal counterparts. Corallo et al. [344] developed a high-speed 
hydraulic bulge test for sheet metal. They highly suggest 
using advanced identification techniques, such as FEMU, to 
calibrate and validate complex, strain rate dependent plastic-
ity models. A summary of high-speed DIC applications in 
FEMU is presented in Table 7.

5.1.5.2 High‑Temperature DIC Ordinary DIC setups may 
progressively fail at elevated temperature (e.g., exceeding 
600◦ ) due to the decorrelation effect from image overexpo-
sure and heat flux [345]. A common way to deal with this 
issue is to combine a strong short-wavelength light source 
and a corresponding narrow band-pass filter [346, 347]. 
This significantly reduces the energy flux from the sample 
heat radiation to the camera sensor, allowing high-contrast 
imaging at a temperature of over 2600 °C [348]. The time-
gated active imaging technique based bandpass filtering and 
gated single-photon imaging techniques is also a practical 
solution [349, 350].

Zhao et al. [129] took advantage of the high-temperature 
measurement to identify the thermo-mechanical parameters 
of Nickel-Based single crystal superalloys at up to 1000 °C. 
In their work, high-temperature deformation measurement 
is facilitated by a blue light source and a corresponding blue 
light filter. Five parameters were identified simultaneously, 
including the three isotropic elastic parameters and two ani-
sotropic coefficients of thermal expansion.

In cases where the sample is heated directly via Joule 
effect by imposing a direct current, Gao et al. [231] meas-
ured the strain field without using an extra light source at 

Table 7  High-speed DIC and its 
applications in FEMU

Refer-
ence

Year Models Materials Frame rate (fps)

[341] 2007 Viscoplastic model Mild steel 100,000
[343] 2014  Plastic behavior Aluminum plates 25,000
[342] 2019 Elastoplastic model and Contact law  Polymer adhesive joint –
[122] 2022 Strain rate hardening model Fiber reinforced polymers –
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temperatures from 800 to 1100 °C. The FEA model was 
built with the displacement boundary condition measured 
through DIC and temperature distribution obtained using IR 
field imaging. The parameters in a temperature-dependent 
elastic–viscoelastic behavior model were calibrated from the 
cost function based on force. Liu et al. [351] measured the 
displacement fields at up to 1100 °C using stereo-DIC with 
a blue light source and a corresponding narrow band-pass 
filter. Four damage parameters of ultra-super-critical rotor 
steel in the Bonora damage model were identified at elevated 
temperature.

Dong et al. [229] measured the deformation field of the 
Ni-based superalloy GH4169 at 300, 500, and 700 °C. They 
used a bi-telecentric lens and blue-light active imaging to get 
high quality images at elevated temperature. They used IDIC 
to identify multiple thermo-mechanical parameters, which 
were then used to decouple the thermo-mechanical defor-
mation. A summary of the applications of high-temperature 
DIC in FEMU is presented in Table 8.

5.1.5.3 Micro DIC and  Multi‑scale DIC Feeding DIC with 
in-situ microscopic images can extract the deformation 
fields of microstructures. Serving as the input to FEMU, 
the measured displacement fields can assist with calibrat-
ing the micromechanical behavior of a material. Bertin et al. 
[352] manufactured a micro-specimen of IF-steel using the 
focused ion beam technique. The sample has a size of 12 × 
4 μ m (with two distinct grains in the sample). The random 
pattern was applied by platinum deposition for image match-
ing. The material parameters of a crystal plasticity model 
were then identified using IDIC. The boundary condition 
in FEA is determined by DIC measurement at micro-scale.

Gebhardt et al. [261] applied a micro-scale speckle pat-
tern to ductile cast iron using a focused ion beam. DIC was 
used to measure the displacement fields at micro-scale using 
the scanning electron microscope (SEM) images from in-situ 
tensile tests. To reliably identify the plasticity parameters 
of ferrite in ductile cast iron, a micromechanical model was 
built based on the microstructure distribution. The bound-
ary condition for FEA is obtained from a macroscopic finite 
element simulation (the model parameters were also deter-
mined using inverse identification by assuming a homogene-
ous and isotropic material).

Both FEA and DIC require achieving a tricky compro-
mise between spatial resolution and uncertainty. Passieux 
[55] proposed using multi-scale DIC to measure the dis-
placement fields on the sample surface using two cameras 
with different spatial resolutions. In the region with high 
strain heterogeneity, local images with higher magnification 
were captured. A lower-magnification camera captured the 
overall sample surface. The measured displacement fields 
can help determining the boundary condition for FEA. They 
proposed an automatic and accurate repositioning algorithm 
based on image registration. This algorithm can fuse the kin-
ematic fields measured at two different scales. This results 
in a good balance between spatial resolution and uncertainty 
that allows more accurate parameter identification.

5.1.5.4 Discontinuous DIC One challenging task for FEMU 
is identifying the parameters in a fracture mechanics model. 
The general DIC algorithms are inherently continuous. 
They inevitably suffer significant measurement errors close 
to the discontinuous deformation region. Consequently, sig-
nificant parameter identification errors will be introduced in 
FEMU. Several kinds of discontinuous DIC methods [353], 
e.g., subset-splitting local DIC [354], extended-DIC [355], 
element-removal global DIC [356], etc., have been devel-
oped to accurately measure the deformation fields in frac-
ture mechanics scenarios. The subset-splitting algorithm 
separates the discontinuous element into two parts based 
on the matching error, where the deformation is continu-
ous within each part,. Extended-DIC enriches the regular 
global-DIC with more degrees of freedom for the element 
sampling discontinuities. The new shape function is then 
able to adequately describe the discontinuous deformation. 
In element-removal global DIC, good matching accuracy 
near the crack is achieved by iteratively finding and remov-
ing only the elements spanning the discontinuity.

5.1.6  Grid Method

The grid method is an advanced non-interferometric white-
light technique for accurate in-plane displacement and strain 
field measurements. It involves processing the images of a 
sample surface that have regular markings applied. The 
major advantage of this method is the good compromise 
between spatial and measurement resolution. This advantage 

Table 8  High-temperature DIC and its applications in FEMU

Reference Year Models Materials Temperature ( ◦C)

[229] 2017 Elastic + thermal expansion Ni-based superalloy GH4169 300, 500, 700
[351] 2020 Temperature-dependent Bonora damage model X12 ultra-super- critical rotor steel 1100
[231] 2022 Elastic + viscoplastic + Arrhenius law Nickel-based superalloy In718 1000
[129] 2023 Elastic + thermal expansion Single-crystal nickel-based superalloy 800 to 1100
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is particularly important in case of small deformation 
measurements.

However, some inherent limitations make the grid method 
less popular than DIC. First and foremost, it requires the 
application of regular features to the sample surface using 
a specific instrument. This method is mainly suitable for 
in-plane deformation measurement of planar samples. Addi-
tionally, it is challenging to deal with very complicated 
deformation fields. More details on the grid method can be 
found in a review paper [85].

The grid method has been used for parameter identifica-
tion in FEMU since 1996. Mahnken and Stein [86] used the 
grid method to measure the displacement fields at a set of 
grid points. The SSD between the simulated and measured 
displacement at several points served as the cost function 
for parameter identification. The strain fields can be easily 
differentiated from the displacement maps [268, 357], pro-
cessed by a some smoothing operation.

5.1.7  Other Methods

In the era of the pioneering work by Meuwissen et al. [87], 
contemporary full-field measurement techniques were not 
that popular. The authors placed 120 retro-reflective markers 
onto the sample surface. A camera captured images of the 
sample surface at each loading step. The displacements of 
these markers were measured by an image processing algo-
rithm. The difference between the measured and numerically 
simulated displacement fields enabled the iterative identifi-
cation of the unknown parameters in elastoplastic models.

Moiré photography is a method used primarily to meas-
ure in-plane deformation. It is implemented by first apply-
ing a grating pattern onto the sample. Images of the sample 
before and after deformation are superimposed to generate 
the Moiré fringe pattern for full-field displacement meas-
urement. The method precision is moderate compared with 
DIC. In 2005, Genovese et al. [179] employed this technique 
to assist in the calibration of a two-parameter Mooney–Riv-
lin (MR) hyperplastic model using FEMU.

Moiré Interferometry [358] and electronic speckle pattern 
interferometer [359] are two more deformation measure-
ment techniques suitable for inverse parameter identifica-
tion, thanks to their advantage of high accuracy. They are 
both interferometric techniques and they place high demands 
on the experimental environment. As a result, they are less 
popular in experimental mechanics, especially in non-labo-
ratory environments.

5.2  Numerical Simulation

Numerical simulation of the mechanical response of a speci-
men is powerful and efficient. It provides part of the input 
information for the FEMU algorithm and is consequently 

one of the most crucial steps in FEMU. Additionally, 
numerical simulation accounts for most of the computational 
resource usage during FEMU optimization. Numerical mod-
eling requires careful preparation to ensure an accurate and 
efficient FEMU implementation. FEA involves several key 
choices when applying FEMU: the boundary conditions, 
the meshes and the solvers. Properly building the FE model 
therefore requires expertise.

5.2.1  Boundary Conditions

The boundary conditions (e.g., displacement, force, or tem-
perature boundary condition) in FEA can dramatically affect 
the FEMU identification results. Both force and displace-
ment boundary conditions are widely adopted in FEMU. 
The displacement boundary conditions can either follow the 
normal value from the experimental setting or be extracted 
from the displacement fields measured by DIC.

The force boundary condition applies the force output 
from the test machine to the FE model. The force boundary 
condition may lead to instability in Finite Element Analy-
sis (FEA) if the initial estimate of the material parameters 
deviates significantly from the actual ones. Suppose, for 
instance, that the initial value for the Young’s modulus is 
much lower than the actual one: the resulting deformation 
may be extremely large, leading to simulation instability. An 
additional caveat is that a force-driven simulation will neces-
sarily always be only an approximation of the reality since 
the exact force distribution in the gripping area is unknown.

The displacement boundary condition can mitigate this 
issue by constraining the deformation. However, the identifi-
cation must have force information, which could be included 
in the cost function. Likewise, a nominal displacement 
boundary condition (Fig. 18a) can hardly match the real 
experiments. An error in the displacement boundary condi-
tion may result in a substantial deterioration in the accuracy 
of the identified parameters [360], especially when the cost 
function is based on displacement fields.

We can resort to the displacement fields extracted using 
DIC or DVC to set the Dirichlet boundary conditions [19, 
64, 133, 224, 307, 352, 361, 362] (Fig.  18b) for FEA. 
Zaplatić et al. [361] compared the influence of five types 
of Dirichlet boundary conditions on the calibrated material 
parameters using FEMU. A requirement of Dirichlet bound-
ary condition is that the ROI measured by DIC should cover 
the FEM mesh [363]. This is a good solution to obtain a 
more accurate simulation [364] by mitigating the impact of 
experimental imperfections [47], such as rigid-body transla-
tion of the sample due to compliance of the test machine or 
imperfect gripping systems (slipping of the sample in the 
grips). This is an effective strategy to improve the accuracy 
and robustness of FEMU. It is also beneficial for improving 
the simulation efficiency, since only the measured ROI needs 
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to be simulated with FEA. It must be noted that directly 
applying the Dirichlet boundary condition is inadvisable due 
to the measurement noise. The recommendation to improve 
the robustness of parameter identification is instead to 
apply a smoothing operation to the measured displacement 
boundary condition [68]. This Dirichlet boundary condi-
tion can eliminate the machine compliance in the tests. The 
final caveat when using DIC is that the approach of directly 
imposing the measured displacement boundary conditions 
is confined to thin specimens in which the through-thickness 
variation of the displacement field can be safely ignored.

The issue of inaccurate boundary condition can also be 
addressed through design of the test itself—for instance by 
ensuring that the material state in the ROI is not sensitive to 
the modelling approach used for the boundary conditions.

5.2.2  Mesh Quality

Mesh quality and density have a strong impact on the effi-
ciency and accuracy of the modeling and are consequently 
also of major importance in FEMU [119, 336, 365]. A finer 
mesh ensures a more accurate simulation but comes at the 
cost of lower efficiency. Additionally, most of the specimens 
tested in the context of FEMU are sheet samples. These sam-
ples, if thin enough, could be efficiently simulated with a 
2D mesh.

For thicker samples, a 2D mesh may yield a nonnegligi-
ble error. In that case, the use of 3D solid elements that can 
model through-thickness strain heterogeneity is mandatory. 
Using 3D elements leads to higher computational demands 
for FEMU, in which the FEA model needs to be evaluated 
multiple times in several iterations. Simulation efficiency 
must be taken into consideration. It is recommended to do 

a mesh convergence evaluation prior to the simulation; a 
mesh with a good balance between efficiency and accuracy 
can then be built.

5.2.3  Numerical Simulation Solver

In material testing, a non-linear static analysis is gener-
ally adequate. For dynamic or modal testing, however, the 
solver is completely different. In ductile damage modelling, 
an explicit dynamic analysis is usually used, even for static 
problems. In FEMU, it is important that convergence prob-
lems in FEA are avoided to prevent premature termination 
of the identification.

FEA is undoubtedly the dominant numerical simulation 
approach in FEMU, due to the numerous available FEA solv-
ers. Some other numerical simulation methods, such as the 
boundary element method (BEM) [57, 366], is still superior 
in some applications, however. BEM is accurate in problems 
where high displacement gradients occur. It is therefore suit-
able for identifying the fracture mechanics parameters. In 
light of the advantages of BEM, Ferreira et al. [58] used 
this numerical simulation method to inversely extract the 
Young’s modulus and the CZM parameters.

6  FEMU Optimization

Once the experiments and simulations have been con-
ducted, parameter optimization follows. There are several 
key factors to consider in parameter optimization, the most 
significant being the cost function, sensitivity analysis, 
data fusion, optimization algorithm, optimization strat-
egy, initial parameter estimates, and convergence criteria. 

Fig. 18  Boundary condition in 
FEMU, a the nominal boundary 
condition from the test machine, 
b the Dirichlet boundary condi-
tion obtained by the full-field 
displacement measurement 
technique
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The cost function is the mathematical cornerstone of the 
inverse identification problem and should be sensitive to 
changes in the material model parameters while being 
robust to data noise. Data fusion denotes the fusion of 
experimental and simulated data. The optimization algo-
rithm and optimization strategy are designed to iteratively 
find the optimal parameters efficiently and accurately. A 
good initial estimate of the parameters can significantly 
speed up the optimization. The optimization should stop 
when certain stop criteria are satisfied. In this section, 
these aspects are reviewed in detail.

6.1  Cost Function

The cost function is at the very heart of FEMU, being 
the mathematical formulation of the inverse identifica-
tion problem [367]. It can be the dominant factor in the 
identification performance (uncertainty, efficiency, etc.), 
since it is highly correlated with sensitivity. The cost 
function is typically constructed as the SSD between the 
measured and simulated results of one or multiple physi-
cal responses. A good cost function can be constructed by 
applying the following criteria:

• The cost function should have high sensitivity to every 
unknown material parameter. The parameters must not 
be highly correlated.

• Cost functions are generally constructed from the physi-
cal responses. A prerequisite for these physical responses 
is that they can be easily simulated and measured.

• More data (e.g., images at multiple load steps) with a 
high signal-to-noise ratio (SNR) can effectively reduce 
the uncertainty of the identified parameters. However, it 
will also increase the calculation time [70, 119].

• For a more robust parameter identification, full advantage 
should be taken of several physical responses in a single 
cost function.

• If the test is repeated for several times, all experiments 
should have equal opportunity to be optimized [368], 
emphasizing that the optimization should not depend on 
user preference on the tests.

• Different physical responses in the cost function may 
have different units, but the difference in the units should 
not have significant effects on parameter identification 
[369]. This can be achieved by scaling, weighting or nor-
malizing each term in the cost function. In most cases, 
the mean value and uncertainty vary significantly among 
the different physical responses at different loading con-
ditions. Scaling and normalization strategies can also 
help to balance the importance of the cost function at 
different states.

• The material model parameters should generally be con-
strained so that non-physical artefacts are avoided—see 

for example the work of Abedini et al. [370]. Their range 
can be constrained by adding physical regularization 
terms into the cost function.

The cost functions mainly fall into the following catego-
ries: global cost functions, local cost functions, hybrid cost 
functions, parameter-regularization cost functions and the 
multi-physics cost functions. The global cost functions 
involve the global responses such as force, geometry quan-
tities, etc. The local cost functions are constructed from 
the field responses, such as displacement or strain fields. 
The hybrid cost functions are the weight combination of 
local and global cost functions.

Beyond that, the parameter-regularization cost func-
tions involve regularization terms related to the identi-
fied parameters. These terms could be priors, penalties, or 
parameter constraints. The aim of the regularization is to 
constrain the values of the identified parameters to keep 
them in the range of plausibility. There are some other 
cost functions used in the identification of some challeng-
ing mechanical models, such as thermomechanical mod-
els. Those cost functions should include multi-physics 
responses. The typical cost functions are summarized in 
Table 9 for comparison.

6.1.1  Global Cost Functions

6.1.1.1 Cost Function Based on  Force Response As the 
name indicates, global cost functions are formulated from 
the global physical responses. The most common global 
response used in FEMU is force. The simplest global cost 
function is the difference [64] between the applied loads 
and the simulated counterparts, see Eq. (20). FEMU based 
on this cost function is denoted as FEMU-F and also called 
the force balance method, the input residual method, or the 
equilibrium method [239]. This cost function is particularly 
helpful in identification tasks where the displacement or 
strain maps are not measured. Giton [64], for example, pro-
posed to identify the hyperelastic parameters from the cost 
function in Eq. (20).

where NS denotes the number of load steps and t  the data 
acquisition step. FEXP

t
 and FFEA

t
 are the forces measured in 

the real experiment and FEA, respectively. � the parameter 
vector needed to be identified. This cost function can be 
refined by adding normalization to each term, see Eq. (21). 
It allows equalizing the importance of the data at different 
acquisition steps [56, 224, 351, 371]:

(20)�FEMU−F(�) =
1

NS

NS∑
t

�
FEXP

t
− FFEA

t
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where FNORM
t

 is a normalization value. One of the most used 
normalization terms FNORM

t
 is the load uncertainty, �F [56, 

224], while the alternative could be FNORM
t

= FEXP
t

 [372]. 
FEMU based on this cost function is here referred to as 
FEMU-FN. This cost function makes more use of data with 
higher SNR. If the load cell has the same load uncertainty 

(21)�FEMU−FN(�) =
1

NS

NS∑
t

�
FEXP

t
−FFEA

t
(�)

FNORM
t

�2 during loading, FEMU-FN normalized by the load uncer-
tainty �F is equivalent to FEMU-F. The FEMU-FN cost 
function proved its effectiveness by identifying the CZM 
parameters of mortar [56] and castable refractory [224].

The global cost function can also be formulated from 
the geometry quantities [365], termed as FEMU-G in this 
review. Touzeau et al. [365] first segmented the sample 
images into binary images. Then, they measured a geometry 
quantity as the n-order moment of the geometry centered to 

Table 9  Comparison of different cost functions

Note 1: Different FEMU methods are notated as “FEMU-*” according to their cost functions, where “*” is the combination of the following 
parts: U: displacement field information, � : strain field information, F: force information, N: normalization to the physical response in the cost 
function, R: regression term for all examined parameters, T: temperature field information, L: crack length feature, C: notch opening displace-
ment feature
Note 2: The normalization term could be either uncertainty-based (e.g., Std

(
uEXP

t,i

)
 , Std

(
�EXP

t,i

)
 ) or value-based variables (e.g., uEXP

t,i
 , �EXP

t,i
 ). The 

uncertainty-based normalization term is recommended when the systematic error is small. The value-based normalization term is suitable in 
cases where the systematic error in the measurement is more significant

Cost function Unique features Common features

Global cost functions
FEMU-F Equal importance of all points at all stages

Sensitive to systematic error
Suitable for cases with strain concentrations
Higher uncertainty due to lack of field information

FEMU-FN Balances the importance of each load stage 
according to certain standard

FEMU-FLN Includes crack length feature Higher uncertainty due to lack of field information
Suitable for fracture mechanical model identifica-

tion
FEMU-FCN Includes the notch opening displacement feature

Local cost functions
FEMU-U Sensitive to rigid-body motion

Suitable for cases with strain concentrations
Robust identification of multiple parameters
Force information is required for modulus identi-

fication
Equal importance of all points at all stages

FEMU-ε Low SNR
Sensitive to strain concentrations

FEMU-UN Sensitive to rigid-body motion
Suitable for cases with strain concentrations

Weights the importance of all points according to 
certain standard

Force information is required for modulus identi-
fication

Robust identification of multiple parameters

FEMU-εN Low SNR
Sensitive to strain concentrations

Hybrid cost functions
FEMU-UF Sensitive to rigid-body motion Robust identification of several parameters

Equal importance of all points at all stagesFEMU-εF Low SNR
Sensitive to strain concentrations

FEMU-UFN Sensitive to rigid-body motion Robust identification of multiple parameters
Balances the importance of all points according to 

a certain standard
FEMU-εFN Low SNR

Sensitive to strain concentrations
Parameter-regularization cost functions
FEMU-FR Suitable for cases with strain concentrations

Higher uncertainty
Control parameters range
Equal importance of all points at all stages

FEMU-UR Robust identification of multiple parameters
Sensitive to rigid-body motion
Force information is required for modulus iden-

tification
Multi-physics cost functions
FEMU-UT Includes the temperature field Suitable for thermomechanical model identifica-

tion
Sensitive to rigid-body motion

FEMU-UFT Includes the temperature field and force
Suitable for cases with strain concentrations



Finite Element Model Updating for Material Model Calibration: A Review and Guide to Practice  

a given point. The FEMU-G cost function is then defined 
as the SSD between the geometry quantities in experiments 
and simulation. Satošek et al. [263] defined the FEMU-G 
cost function as the difference between the measured and 
simulated pile-up heights in an indentation test and then 
identified the parameters related to the out-of-plane shear 
properties.

6.1.1.2 Cost Function Including Fracture Mechanics Infor‑
mation Doitrand et al. [72] proposed to identify the CZM 
parameters from a WST of refractories. The tortuous crack 
path on the sample is detected by thresholding the strain gra-
dient measured by DIC. The experimentally measured kine-
matic fields are unlikely to match perfectly with the numeri-
cal simulation. This mismatch is especially significant near 
the crack tip, where the strain concentration exists. This is 
a challenge for robust parameter identification. Instead, the 
authors proposed a new cost function. This cost function is a 
combination of the normalized reaction force and the crack 
length and is referred to as FEMU-FLN:

where �NOD is the standard deviation of displacement noise 
in the DIC measurement; NL is the number of crack length 
data; L is the crack length; � is the weight. An alternative 
cost function [70, 71] considers the difference between the 
numerically simulated and DIC measured notch opening 
displacement (NOD). The new cost function is referred to 
as FEMU-FCN. It is expressed as

Both FEMU-FLN and FEMU-FCN are particularly effec-
tive for the identification of CZM parameters. There are two 
major reasons for that. First, since no field measurement is 
considered in the cost functions, they can avoid the large 
strain error near the crack region. Second, additional crack 
information (crack length, NOD) is included in the cost 
functions.

One advantage of the global cost functions is that they 
are less sensitive to local variation abnormity. This advan-
tage is particularly meaningful when the samples have 
nonnegligible strain or stress concentrations. These global 
cost functions avoid using the displacement or strain maps 
from DIC. This is useful when applying the speckle pat-
tern to the specimens is hard to accomplish. However, very 
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limited information is involved in the global cost functions. 
This limitation may lead to higher residual for the identi-
fied parameters [143]. Additionally, it can hardly be used to 
identify complicated material models with multiple constitu-
tive parameters.

6.1.2  Local Cost Functions

The local cost functions are constructed from the field 
response that can be simulated and experimentally meas-
ured. They are generally defined based on the 3D shape 
[366], the strain fields or the displacement fields (measured 
by 2D-DIC, stereo-DIC, DVC, etc.). The local cost functions 
can provide much richer information than the global cost 
functions. The richer information is helpful for identification 
in complicated models with multiple parameters. It may also 
contribute to more accurate parameter identification [53]. 
Richer information increases the likelihood of achieving 
good sensitivity to all parameters. It must be noted that both 
the displacement and strain fields have multiple components 
(e.g., �xx , �yy , �xy ). For simplicity, only one component is 
presented in the cost function in this review, but the combi-
nation of multiple components is preferable in most cases. 

6.1.2.1 Cost Function Based on  Displacement Fields The 
cost function based on the SSD of the displacement fields 
[19, 38, 42, 64, 165, 178, 261, 279, 365, 373], denoted as 
FEMU-U, is written as

where i denotes i-th point in the ROI; ND is the number of 
data points in the ROI. Displacements uEXP

t,i
 and uFEA

t,i
 are 

obtained from experimental measurement and FEA, respec-
tively. This cost function considers the influence of each 
calculation point to be equal.

This cost function can be normalized. The normalized 
cost functions are denoted as FEMU-UN (Eq. 25). One 
major aim of the normalization term is to balance the SNR 
for different samplings. Additionally, it can compensate for 
the scale differences for each term in the cost function.

where uNORM
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 is the normalization term. It can be different 
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209]uNORM
t,i

= RMS

(
uEXP

t,i

)
 (RMS: root mean square 

operator).
An alternative approach is to normalize the cost function 

with the covariance matrix. It propagates the measurement 
uncertainties from the kinematic fields to the sought param-
eters [157]. Both �FEMU−U and �FEMU−UN are sensitive to the 
inevitable rigid-body movement of the samples. The rigid-
body motion may lead to nonnegligible errors in parameter 
identification.

6.1.2.2 Cost Function Based on Strain Fields The cost func-
tions using strain fields can effectively avoid the rigid-body 
motion issue. Similarly as in FEMU-U, the SSD of strain 
maps can be directly regarded as the cost function [38, 39, 
51, 255, 256, 261], which is denoted as FEMU-�.

FEMU-ε , like FEMU-U, gives equal weight to all points 
at all stages. The normalization terms used in FEMU-UN 
can be seamlessly transferred to FEMU-ε , leading to FEMU-
ε N [51].

One of the most significant limitations in FEMU-ε and 
FEMU-ε N is the comparatively lower SNR for strain fields. 
The noise can be improved by a low-pass filter at the cost 
of more significant systematic error. This operation is more 
suited to strain fields with relatively low strain gradients. 
This limitation imposes significant challenges in calibrating 
the orthotropic elastic properties of some fiber-reinforced 
composites, such as wood-fiber composites. Material defects 
may be significant in these materials [59]. The strain fields 
in these materials may have obvious concentrations, which 
might make FEMU-U and FEMU-UN preferable to FEMU-� 
and FEMU-ε N in such cases. However, systematic errors can 
hardly be eliminated in real tests.

6.1.2.3 Normalization Strategies Normalization in the cost 
function may improve the identification stability and robust-
ness. The primary  goals  are  guaranteeing  scale invari-
ance, offering outliers robustness and controling the relative 
importance of different measurements. Different normaliza-
tion strategies in FEMU-UN and FEMU-�N suit different 
identification tasks. For the sake of simplicity, we will dis-
cuss only FEMU-UN. The discussion can be easily general-
ized to FEMU-εN . The normalization terms uNORM

t,i
= uEXP

t,i
 , 
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 (same as for the strain-based FEMU 

cost function) follow a very similar principle. They are suit-
able for cases with pronounced systematic errors, such as 
undermatched material models or imprecisely reproduced 
boundary conditions. In those cases, the systematic errors 
tend to increase with loading. These normalization strate-
gies can balance the impact of the displacement or strain 
errors at different loading stages.

Regarding uNORM
t,i

= uEXP
t,i

 , uEXP
t,i

 could be negligibly small 
at certain points due to the heterogeneity of the kinematic 
fields. The small value of uEXP

t,i
 may produce a singularity in 

the cost function. One solution is to replace the normaliza-
tion term with its absolute value and add a small positive 
compensation. Alternatively, we can eliminate these data 
points from the cost function entirely due to their low SNR.

Assume that the numerical model matches the real tests 
perfectly and that only random noise exists in DIC measure-
ment. In this case, a better normalization term uNORM

t,i
 is 

Std

(
uEXP

t,i

)
 at each load step. This strategy is more effective 

at balancing the cost function at different load steps. Com-
pared with Std

(
uEXP

t,i

)
 , the theoretical uncertainty of each 

point can be estimated by the covariance matrix. This pro-
vides more accurate weighting for each point in the cost 
function by taking into account the variation in the speckle 
pattern quality on the sample surface [300]. In some cases 
(with the same sample, same imaging setup and DIC set-
tings, stable speckle, etc.), it is reasonable to assume a con-
stant DIC measurement uncertainty throughout the experi-
ment, in which case the cost function normalized by 
Std

(
uEXP

t,i

)
 is equivalent to the non-normalized one.

6.1.3  Hybrid Cost Function

It must be noted that the cost functions based solely on 
kinematic fields may result in an underdetermined param-
eter identification problem. This happens when a displace-
ment boundary condition is applied to FEA. In such cases, 
the force information must also be included in the cost 
function.

Combining the aforementioned force-based and displace-
ment- or strain-based cost functions results in hybrid cost 
functions, also known as weighted FEMU in the literature. 
In this review, to keep consistency, we denote them as 
FEMU-UF (non-normalized) [20] or FEMU-UFN (normal-
ized) [40, 43, 143, 187, 250, 264, 375]. Since the displace-
ment and strain fields have different units than force, the 
direct combination of these cost functions [20] in FEMU-UF 
does not have any physical meaning. Normalization terms 
are therefore necessary to balance the influence of different 
physical quantities.
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Force-based cost functions are more robust to 
stress–strain concentrations, while kinematic-based cost 
functions facilitate more robust parameter identification of 
multiple parameters simultaneously. FEMU-UF and FEMU-
UFN balance the strengths and weaknesses of both types of 
cost functions, significantly reducing the parameter identi-
fication uncertainty [143]. The FEMU-UFN cost function, 
which combines the influence of the normalized residual, 
is given by:

where 0 < �<1 is a dimensionless weight controlling the 
contribution of each part. By setting � to 1 or 0, this cost 
function degenerates to �FEMU−FN or �FEMU−UN , respectively. 
A natural and simple choice for � is 0.5, which give equal 
weight to the normalized force and displacement residuals 
[70, 200]. If �FEMU−FN and �FEMU−UN are normalized by the 
corresponding measurement uncertainty, it is recommended 
to set the weight � to � =

NF

NU+NF

 , based on Bayesian princi-
ples [143, 233, 376], where NF and NU are the calculation 
point number for force and displacement, respectively.

Replacing �FEMU−UN with �FEMU−εN leads to �FEMU−εFN 
[11, 41, 44, 68, 193, 206, 265, 270, 377, 378].

In comparison with �FEMU−UFN , �FEMU−εFN is more 
robust to rigid-body translation. For clarity, the features of 
�FEMU−εFN are not discussed in detail here, since they can be 
easily generalized from �FEMU−UFN.

6.1.4  Parameter‑Regularization Cost Function

The unknown parameters in most of the cost functions are 
unconstrained. In the process of optimization, the parameters 
may converge to unrealistic values. The parameter values 
can be constrained to a reasonable range by adding a regu-
larization term into the cost function [86]. These constrained 
terms can also introduce prior knowledge of the constitutive 
parameters to the cost function. The constrained cost func-
tion leads to a “regularized model updating” [379].

By adding regularization terms to FEMU-F, a new cost 
function, FEMU-FR [61], can be obtained. It is expressed as:

where �F and �fk
 are non-negative weights. fk

(
pk

)
 is a 

regularization term with respect to the k-th material model 
parameter pk . fk

(
pk

)
 should be assumed to have a negligible 

value within the feasible region but an extremely large value 

(28)
�FEMU−UFN(�) = ��FEMU−FN(�) + (1 − �)�FEMU−UN(�)

(29)
�FEMU−εFN(�) = ��FEMU−FN(�) + (1 − �)�FEMU−εN(�)

(30)

�FEMU−FR(�) = �F

NS∑
t

�
FEXP

t
− FFEA

t
(�)

�2
+

M∑
k

�fk
fk
�
pk

�

in the forbidden region for parameter pk . The regularization 
terms can also be used with FEMU-U, yielding a constrained 
cost function FEMU-UR [379, 380].

6.1.5  Multi‑physics Cost Functions

The previous cost functions are applicable to most parameter 
identification tasks. However, in some special identification 
tasks, such as those involving thermal mechanics, the cost 
functions need to incorporate additional physical responses 
beyond just kinematic and force information. Including this 
extra information can enhance the robustness of FEMU 
identification.

Rose et al. [105, 230] proposed two cost functions to be 
used when identifying thermomechanical parameters. The 
first one is called FEMU-UT. It includes both the displace-
ment field and the temperature field in a weighted cost func-
tion [230, 381]. It is written as

where NT is the number of measured temperature data points 
at each load step. The relative displacement Δu between 
neighboring points is used to eliminate the influence of 
rigid-body motion of the sample. The temperature increment 
field ΔTEXP

t,i
 measured by an IR camera and its counterpart 

ΔTFEA
t,i

 from FEA are also included. �T and �U are the cor-
responding weights. This cost function was further extended 
by adding force information [105]. The new cost function is 
denoted as FEMU-UFT in this review and is expressed as

The stress information can also be used to construct 
the cost function. Jiang et al. [382] measured the residual 
stress by a so-called contour method [383]. They identified 
a thermo-mechanical model by using both stress and tem-
perature information using FEMU.

(31)

�FEMU−UT(�) = �T

NS∑
t

NT∑
i∈ROI

(
ΔTEXP

t,i
− ΔTFEA

t,i
(�)

)2

+ �U

NS∑
t

ND∑
i∈ROI

(
ΔuEXP

t,i
− ΔuFEA

t,i
(�)

)2

(32)

�FEMU−UFT(�) = �T

NS∑
t

NT∑
i∈ROI

(
ΔTEXP

t,i
− ΔTFEA

t,i
(�)

)2

+ �U

NS∑
t

ND∑
i∈ROI

(
ΔuEXP

t,i
− ΔuFEA

t,i
(�)

)2

+ �F

NS∑
t

(
FEXP

t
− FFEA

t
(�)

)2
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6.2  Sensitivity Analysis

A necessary condition for successful parameter identifica-
tion in FEMU is that the calculated response must be sensi-
tive to parameter changes. This is ensured by performing a 
sensitivity analysis [384] to evaluate the identifiability of 
the problem. By carefully analyzing the sensitivity of the 
calculated response, the spatial and temporal domains in 
which the parameters are activated can be determined. Since 
FEMU optimization involves iteratively updating the param-
eters to minimize the cost function, the latter should be sen-
sitive to parameter changes. A small perturbation in a param-
eter should be reflected in an obvious change in the value of 
the cost function. Sensitivity analysis should be integrated 
into test design and cost function construction in order to 
activate the sensitivity of individual parameter. Tests and 
cost functions with low sensitivity should be refined.

We will review three methods for sensitivity evaluation. 
The most popular method is based on the sensitivity matrix. 
The sensitivity is expressed using the Jacobian matrix, for-
mulated as the partial derivatives of the cost function at each 
point with respect to each parameter. However, this method 
does not take into account the correlation between differ-
ent parameters, which can lead to poor convergence of the 
optimization algorithm and ultimately result in a non-unique 
solution. A collinearity analysis is highly recommended to 
better evaluate the identifiability. The third method is var-
iance-based sensitivity analysis, which calculates the so-
called Sobol indices in a probabilistic framework instead 
of using the Jacobian matrix. This method can evaluate 
both the sensitivity of individual parameters and interaction 
between two parameters.

6.2.1  Sensitivity Based on Jacobian Matrix

Sensitivity is expressed as the partial derivatives of the 
model response (e.g., displacement fields, strain fields, crack 
opening displacement, reaction forces, etc.) with respect to 
each unknown material model parameter [381]. Generally, a 
large sensitivity value indicates good identifiability, meaning 
that a small perturbation leads to a noticeable change in the 
measurands.

For derivation purposes, we first define the general for-
mulation of FEMU cost function as:

where � l(�) is the individual contribution of the differences 
between the measured and the calculated response to the cost 
function. The index l represents each individual contribu-
tion. The sensitivity is expressed by the Jacobian matrix � , 

(33)�(�) =
NS⋅ND∑

l=1

�
� l(�)

�2

defined as a partial derivative of individual cost function 
contribution � i(�) over each parameter:

where M is the number of unknown parameters. In the case 
of FEMU-ε , where the cost function is given by Eq. (26), the 
sensitivity [107] is given by the modified Jacobian matrix 
of size ( NSND × M):

This formulation is directly related to the structure of the 
cost function, including the different units of the physical 
responses (e.g. forces, displacements and strains). Note that 
only one strain component is included here, while in gen-
eral it is preferable to consider all the three strain compo-
nents. To do that, we can augment more rows corresponding 
to the sensitivity of the other strain components to the cur-
rent Jacobian matrix. As the Jacobian matrix indicates, the 
sensitivities of these quantities to parameter changes 
can hardly be directly compared. One solution is to resort to 
parameter scaling and cost function normalization strategies 
to obtain dimension-free sensitivity. The columns of the 
matrix are multiplied by the normalization term 
�t,k =

pk�
1

ND

∑ND
i

�
�FEA

t,i

�2
 . The Jacobian matrix � can be normal-

ized into:
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The normalized Jacobian is related to a normalized cost 
funct ion with the same normalizat ion terms �

1

ND

∑ND

i

�
�FEA

t,i

�2

 . Sensitivity calculation requires the par-

tial derivative of the strain components with respect to each 
parameter. A straightforward and practical approach is to use 
the finite difference approximation method with a small per-
turbation (e.g., 1% [50, 224], 0.5% [38, 107]) on each param-
eter. We should emphasize that a good value of relative 
parameter perturbation is governed by the tradeoff between 
the roundoff and the truncation error, which is driven by the 
machine precision: Δp

(j)

k
= p

(j)

k

√
� , where � is the machine 

precision ( � = 10
−8 for single precision) [385]. For a given 

parameter p(j)

k
 perturbation at j-th iteration, the components 

of the modified Jacobian matrix are numerically calculated 
as

where Δp
(j)

k
 is the parameter perturbation vector written as

Attention should be paid to the fact that in Eq.  (37), 
the partial derivative of �FEA

t,i

(
�(j)

)
 with respect to the k-th 

parameter p(j)

k
 requires two evaluations of the FEA model. 

The calculation of � therefore requires at least M + 1 evalu-
ations of the FEA model. This operation can be very time-
consuming, especially when many parameters need to be 
identified in the material model.

Based on the sensitivity analysis, we can visualize the 
results in multiple ways. A straightforward method is to 
plot the heterogeneous sensitivity map at each load step, as 
shown in Fig. 19a. However, due to the complex sensitivity 
distribution, directly comparing the sensitivity maps is dif-
ficult. There is a special case involving global cost functions 
(e.g., FEMU-F), where the Jacobian matrix has a size of 
1 × M at each load step, in which case a scalar instead of a 
vector is obtained for the sensitivity to a single parameter. 
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The evolution curve of the sensitivity with respect to each 
parameter can be directly obtained during the loading pro-
cess [56, 224]. This sensitivity evolution can also be used 
to determine the preferable load state for identification. To 
better evaluate the heterogeneous sensitivity with respect 
to each parameter, an indicator �k defined as the Euclidean 
norm of the k-th column in the Jacobian [107] can be used.

The indicator �k for k-th parameter can combine the influ-
ences from different load steps into a single scalar. It ena-
bles direct comparison of the sensitivity with respect to each 
parameter. The parameter whose sensitivity falls below a 
given threshold [237] can be considered as having poor iden-
tifiability. However, no standard exists to set this threshold 
in FEMU yet. The order of magnitude, that is the relative 
values of the sensitivity compared to each other, is a better 
indicator than the absolute sensitivity value of each material 
parameter [386, 387].

6.2.2  Conditioning and Collinearity Evaluation

Good sensitivity for every parameter is a necessary but not 
sufficient condition for good identifiability. It can directly 
influence the convergence of the optimization problem. 
One parameter with large sensitivity may be deeply coupled 
with some other parameters. As a result of such correlation 
issues, a parameter with large sensitivity may still be dif-
ficult to identify. To evaluate such cross-influences between 
different parameters, we can use the Hessian matrix defined 
by the second derivatives of the cost function:

From an implementation perspective, the formulation 
above is intricate and computationally time consuming. The 
second reason why such a formulation is rarely utilized in 
optimization algorithms is that the quadratic approximation 
of the cost function performs poorly near the extreme val-
ues of the cost function, which can lead to divergence. It is 
therefore more practical to use a linear approximation of the 
Hessian matrix, defined as:

In the Hessian matrix, the diagonal terms denote the 
sensitivity to each parameter, while the off-diagonal terms 
show the cross-influence between two parameters. The rate 
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of convergence of gradient-based methods depends on the 
condition number � of the Hessian of the cost function at the 
optimum point. If the condition number is large, the method 
is slow to converge and identifiability is hindered due to the 
possibility of coupling between parameters. The condition 
number [388] is defined as the ratio between the largest and 
the smallest eigenvalue of the Hessian matrix:

where �min and �max are the smallest and largest eigenvalue 
of Hessian matrix, respectively. If the problem is ill-condi-
tioned, log

10
� digits should be expected in computing the 

solution [389]. A similar approach that involves calculat-
ing the decimal logarithm of the Hessian matrix was imple-
mented by Vargas et al. [56, 224] to analyze the conditioning 
of the optimization problem. They considered a condition 
number below 10 for a good identifiability. The identifiabil-
ity of the optimization problem can be improved by Hessian 
matrix regularization and scaling of the parameter design 
space [388]. This approach ensures that the conditioning of 
the problem is determined by the smallest eigenvalue of the 
Hessian matrix.

This is particularly important when there coupling exists 
between parameters. If there is coupling between two or 
more parameters, the condition number becomes large as 
�min approaches 0. To evaluate the coupling of multiple 
parameters in identification, Zhang et al. [107] adopted the 
collinearity index proposed by Brun et al. [390]. The col-
linearity index is defined as

(42)� =
�max

�min

(43)�Q =
1√
�min

where �min is the smallest eigenvalue of �̃T
q
�̃q (size of q × q ). 

Q is a parameter subset with a size of q . For a small subset 
of the parameter vector, the corresponding columns in the 
full sensitivity matrix are selected from � [Eq. (36)] and 
normalized by the l2-norm of each corresponding column, 
leading to the subset sensitivity matrix denoted as �̃q [107]. 
An example of the correlation matrix in full parameter space 
is shown in Fig. 19b. The value in the correlation matrix 
ranges in [− 1, 1]. The sensitivity matrix is symmetric with 
the main diagonal being one. Larger absolute value in this 
matrix denotes highly correlated parameter pair.

There are, in total, 2M − M − 1 possible combinations of 
the parameters, leading to 2M − M − 1 collinearity indexes. 
The response of one parameter is easier to compensate by a 
greater number of other parameters. For this reason, param-
eter collinearity is more significant when more parameters 
are considered in �̃q . In the case of normalized sensitivi-
ties, collinearity indexes �Q below 20 [107] can be regarded 
as indicating good identifiability. Such analysis can help to 
find the largest identifiable set of parameters for which the 
collinearity of the parameter subset is below a chosen col-
linearity threshold.

6.2.3  Variance‑Based Sensitivity Analysis

The variance-based sensitivity analysis, also known as Sobol 
indices [391], is a global sensitivity analysis method that 
has also been used to analyze the sensitivity of FEMU [220, 
392–394]. The Sobol indices are calculated within a proba-
bilistic framework instead of relying on a Jacobian matrix. 
The variance of the cost function might be mainly affected 
by some parameters, which can be interpreted as the measure 
of sensitivity.

Fig. 19  a Normalized sensitivity map of �xx , �xy and �yy with respect 
to Ex for an orthotropic elastic material, b the correlation matrix for 
collinearity evaluation. The material model parameters Ex , Ey , Gxy , �xy 
are set to 10 GPa, 5 GPa, 0.3 and 3 GPa, respectively. The sample 

size is 15 × 40 mm with an open-hole diameter of 6 mm. The off-axis 
loading orientation is at an angle of �

6
 with respect to the fiber direc-

tion
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There are two typical types of Sobol indices, the first-
order Sobol index, and the total Sobol index. The first-order 
indices are used to evaluate the sensitivity of an output (such 
as the cost function � ) with respect to each parameter. The 
total Sobol indices can quantify the interactions between 
these parameters.

The first-order sensitivity is written as

where Vpk

(
E�∼k

(
�|pk

))
 is the conditional variance of the 

expected value of the output � when all parameters are 
fixed, except for pk . V(�) is the unconditional variance of 
the output. Vpk

(
E�∼k

(
�|pk

))
 varies between 0 and V(�) . The 

first-order sensitivity Sk , therefore, varies between 0 and 1. 
The total Sobol index is calculated as

where V�∼k

(
Epk

(
�|�∼k

))
 denotes the conditional variance of 

the expected value of the output � when only parameter pk 
is fixed. The calculation of the sensitivity can be obtained 
through Monte Carlo integrals and quasi-random sampling. 
For more detail about the calculation of Sobol indices using 
Monte Carlo method see Ref. [394].

Pereira et al. [392] calculated Sobol indices to com-
pare parameter identifiability. They investigated the influ-
ence of the Swift hardening law and the Hill48 anisotropic 
yield criterion on the forces, principal strains, strain path 
and thickness reduction. Alfano et al. [220] evaluated the 
first-order sensitivity of the cost function in FEMU with 
respect to each material model parameter in various CZMs, 
including bilinear, trapezoidal and potential based CZMs. 
Li and Lubineau [393] aimed to find the most informative 
and measurable metrics by global sensitivity analysis. The 
sensitivity analysis shows that properly selecting measurable 
metrics in space and time has a considerable influence on 
the sensitivity. They constructed the cost function based on 
the sensitivity analysis for better parameter identification 
in FEMU.

6.3  Data Fusion

In classical FEMU, experimental measurement and numeri-
cal simulation are implemented separately. To facilitate com-
parison between the FEA and DIC data, the data points from 
FEA and DIC need to be aligned. This is particularly impor-
tant for strain fields with large gradients. Data point fusion 
includes two primary aspects: the alignment of the two coor-
dinate systems and the interpolation of the data points.

The data fusion pipeline is schematically illustrated in 
Fig. 20. It involves fusing the data points from experiments 

(44)Sk =
V�k

(
E�∼k

(�|pk)
)

V(�)

(45)STk = 1 −
V�∼k

(
Epk

(�|�∼k)
)

V(�)

and simulations into the same mesh in the same coordinate 
system. This is accomplished by a sequence of steps, begin-
ning with a rigid-body transformation, followed by scaling 
and finally data point interpolation. Transformation is used 
to align the coordinate systems. It can be implemented by 
imposing a rigid-body transformation (2D transformation 
for 2D-DIC and 3D transformation for stereo-DIC [38, 264]) 
onto the measured point cloud. Once the coordinate sys-
tems are matched, the data points from the real experiment 
(simulation) should be interpolated to the simulation (real 
experiment).

6.3.1  Coordinate System Alignment

A small misalignment of the coordinate system can have 
a surprisingly large effect [37] on the identification pro-
cess. Beyond a certain level of misalignment, finding reli-
able parameters becomes impossible [395]. Ruybalid et al. 
[130] assessed the performance of FEMU and I-DIC when 
subjected to different error sources. They found that mis-
alignment of the specimen can further increase errors in the 
identified material parameters. Despite the importance of 
aligning the DIC and FEM data, there is limited information 
on how researchers perform the alignment of the full-field 
measurements with FEM data. Here, we review two types of 
methods for coordinate system alignment. The first category 
is based on feature point detection and matching, while the 
second relies on specimen edge detection and matching.

The first type of method is straightforward and efficient. 
Bruno et al. [396] utilized a linear transformation matrix to 
map the location of three calculation points to their pixel 
positions on the image. A similar approach involves detect-
ing some reference points on image. The coordinates of 
these points on the sample are known in advance, enabling 
the transformation of the model coordinate system. Both 
coordinate alignment methods rely on having some easy-
to-detect feature points on the sample to serve as reference 
points. However, they become increasingly difficult to use 
and error-prone when the sample [190] has smooth shapes 
and lacks easy-to-detect feature points.

The second type of method involves specimen shape 
detection and alignment (point set registration). One of the 
best-known methods for point set registration is the itera-
tive closest point (ICP) algorithm introduced by Besl and 
McKey [397].The algorithm iteratively aligns two data sets 
by searching the closest points and minimizing the matching 
error. It is, however, impossible to guarantee the conver-
gence robustness of this method in cases of initial misalign-
ment [398]. The robustness of the registration process for 
FEMU was improved by Maček et al. [123], whose method-
ology involves first recognizing the contour. By matching the 
contour with the CAD model, the transformation between 
the two coordinate systems can be calibrated.
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6.3.2  Data Point Alignment

Another problem to be solved in data fusion is that the data 
points in simulation and experiment do not coincide when 
transformed into the same coordinate system. To calculate 
the cost function, it is necessary to align the data points 
from experiments and simulations to the same locations. For 
simplicity, we focus only on the classical FEMU method. 
Additionally, we assume the cost function is constructed 
from the kinematic fields. Three typical data fusion methods 
are reviewed here. The one most widely used is the classical 
interpolation method. The mesh sharing strategy and the 
field decomposition method also each have unique advan-
tages. The data fusion method discussed can be general-
ized to some other physical fields. It should be noted that 
dedicated algorithms are required when merging data from 
measuring systems that rely on the Lagrangian (DIC) and 
Eulerian (temperature fields from IR camera) viewpoint.

The classical interpolation methods, such as bilinear 
interpolation [38, 105, 337], natural neighbor interpola-
tion [51] and cubic-spline interpolation method [11] can be 
directly used for this task. Interpolating the data points from 
a finer mesh to a coarser mesh [105] can reduce interpola-
tion error. Conversely, interpolating from a coarser mesh to 
a finer mesh yields more data points in the cost function. 
Finally, the cost function can be easily calculated based on 
the aligned data points.

The mesh sharing strategy can eliminate the extra data 
point interpolation step [47, 60]. It involves first generating 
a mesh that will serve to provide the calculation points for 
both DIC (or FEA). The mesh is then exported to the FEA 
solver (or DIC software). Since DIC and FEA share the same 
nodes, no extra interpolation is required, which is beneficial 
for more accurate identification.

Finally, there is the so-called field decomposition 
method [48, 358, 399, 400]. This method can significantly 
reduce the data dimension. It projects the high-dimensional 

displacement or strain field onto a set of orthogonal basis 
functions (such as Chebyshev polynomials [400] or modi-
fied Zernike polynomials [48, 399]). The measured physical 
fields are approximated by a small set of basis functions. A 
shape feature vector can then be obtained for each physi-
cal field. This method can significantly reduce redundant 
information in the physical fields. The gap between DIC 
and FEA is then evaluated as the distance between the two 
shape feature vectors. A benefit of this method is that there 
is no need to compute the data in DIC and FEA at the same 
nodes. The identification of the elastoplastic material prop-
erties demonstrated that the method is more accurate than 
the direct method that uses all the information from DIC 
measurement [48].

6.4  Optimization Algorithm

In principle, FEMU solves a non-linear least squares optimi-
zation problem. This optimization problem is in most cases 
highly non-convex, with potentially multiple local optima. 
A non-linear optimization algorithm [401] should be devel-
oped to inversely identify the unknown model parameters by 
iteratively minimizing the cost function.

For simplicity, consider a parameter identification task 
based on the FEMU-� cost function [Eq. (26)]. An optimiza-
tion algorithm should be used to iteratively find the param-
eter vector � (with M dimensions). The algorithm iterates 
the parameters until the cost function value falls below a 
threshold or until the parameters stagnate [18].

A favorable algorithm should offer a good balance 
between the convergence radius and convergence speed. In 
the context of FEMU, optimization algorithms fall mainly 
into four categories: gradient-based methods, derivative-
free methods, hybrids of gradient-based and derivative-free 
methods, and the trust region algorithm. The gradient-based 
methods converge quickly but at the cost of a limited con-
vergence radius, which means they often converge to a local 

Fig. 20  Data fusion between the kinematic data from FEA and DIC
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optimum instead of the global optimum. The derivative-
free methods generally have a larger convergence radius, 
but may require more iterations. A practical approach that 
balances identification efficiency and accuracy is to use a 
derivative-free method for the initial guess, followed by a 
gradient-based method for final iterative optimization. A 
comparison of the some typical FEMU optimization algo-
rithms is offered in structural health monitoring community 
[402]. The typical optimization algorithms are summarized 
in Table 10.

6.4.1  Gradient‑Based Algorithms

Gradient-based optimization algorithms are those that 
require gradient information of the cost function. The gra-
dient of the cost function with respect to the constitutive 
parameters indicates the direction of the steepest increase 
or decrease of the cost function.

The first step in these algorithms is to designate a good 
initial guess. Then, the gradient of the cost function is either 
analytically or numerically calculated. Gradient calculation 
is one of the most time-consuming steps in the optimiza-
tion process. Thereafter, the constitutive parameters can be 
iteratively optimized. Gradient-based algorithms are efficient 
when the cost function is convex; otherwise, convergence 
can be difficult to achieve.

Here, we review some of the most widely accepted 
gradient-based optimization algorithms,. focusing in par-
ticular on the gradient descent method, the Gauss–Newton 
algorithm and the Levenberg–Marquart (LM) algorithm. 
Additionally, we briefly introduce some other algorithms, 

such as Sequential Quadratic Programming and the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

6.4.1.1 Gradient Descent Method In the gradient descent 
method [86, 122], the local minimum is iteratively 
approached by moving towards the opposite direction along 
the gradient direction. It has a first-order convergence rate. 
The algorithm updates the parameter vector �(j+1) at j-th 
iteration as

where � is defined by Eq. (34); 𝛾 > 0 is a small step size that 
has significant impact on the algorithm performance.

6.4.1.2 Gauss–Newton Algorithm The Newton-type algo-
rithms are iterative optimization algorithms with second-
order convergence (assuming a good initial guess is pro-
vided). This algorithm requires calculating the second-order 
derivative matrix (Hessian matrix or its approximation) of 
the cost function with respect to the parameters. As a result, 
it is less robust than the gradient descent algorithm for non-
convex optimization problems. They have been widely used 
in FEMU [38, 71, 119, 130, 207, 384, 403] when a good 
initial guess is available. The iteration of the algorithm can 
be express as

The Newton-type algorithms normally also need 
to numerically calculate � at each iteration, similar to 

(46)
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Table 10  Summary of typical optimization algorithms

Optimization methods Specific algorithms Comments

Gradient-based methods Gradient descent method [86, 122]
Gauss–Newton algorithm [38, 71, 119, 130, 178, 207, 

403]
Levenberg–Marquart algorithm [11, 51, 65, 122, 270, 

378]
SQP algorithm [60, 64, 362]
BFGS algorithm [86, 307]

High efficiency if a good initial guess is given. Other-
wise, convergence is hard to obtain

Derivative-free algorithms Nelder–Mead method [59, 61, 68, 226]
Genetic algorithm [196, 262, 337, 351]
Powell algorithm [362]
Bisection method [365]
Simulated annealing [409, 410]
Particle swarm optimization [411]

Relatively low efficiency but better convergence capa-
bility

Hybrid methods Evolutionary algorithm + Levenberg–Marquardt algo-
rithm [174, 412]

Particle swarm optimization + gradient-based algorithm 
[129]

A balance between convergence efficiency and conver-
gence capability

Trust region algorithm First-order and quadratic trust region algorithm [250, 
373, 415]

A balance between convergence efficiency and conver-
gence capability
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the gradient descent method. It must be noted that the 
Gauss–Newton (GN) algorithm is rather sensitive to the 
initial guess of the parameters and may easily converge to a 
local minimum instead of the global minimum if the initial 
guess is not good enough.

6.4.1.3 Levenberg–Marquardt Algorithm The Levenberg–
Marquardt (LM) algorithm is a tradeoff between the GN 
algorithm and the gradient descent algorithm. In compari-
son with the GN algorithm, it can increase the convergence 
radius without sacrificing too much convergence speed. 
Thanks to this advantage, it is popular in FEMU [11, 51, 65, 
122, 270, 373, 378]. The algorithm is expressed as

where � is called the damping factor and � is the identity 
matrix. This algorithm degenerates to a GN algorithm when 
� = 0.

6.4.1.4 Other Gradient‑Based Algorithms The previously 
discussed algorithms are primarily suitable for uncon-
strained nonlinear optimization problems. Sequential 
Quadratic Programming (SQP) [60, 64, 362] is a powerful 
optimization algorithm for solving nonlinearly constrained 
optimization problems. What makes this algorithm attrac-
tive in FEMU is that the unknown parameters are generally 
bounded.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm is one of the most popular Quasi-Newton methods. Its 
most appealing feature is that it updates the inverse of the 
Hessian matrix instead of calculating the matrix at every 
iteration. The BFGS algorithm and its variations (e.g., the 
Limited-memory BFGS [404]) have also been employed in 
FEMU optimization [86, 307].

In gradient-based algorithms, one of most computation-
ally expensive tasks is the calculation of the Jacobian matri-
ces (or sensitivity matrices) at each iteration. Neggers et al. 
[133] proposed using a secant method to reduce this compu-
tational burden. They proposed only updating the sensitiv-
ity matrices when the cumulative change in the parameters 
since the last sensitivity update exceeds 5%. This does not 
necessarily speed up the overall calculation, however. This 
is because less accurate sensitivity matrices calculation may 
demand more iterations despite each iteration being faster.

6.4.2  Derivative‑Free Optimization Algorithms

The derivative-free optimization algorithms aim to effi-
ciently find good solutions in non-convex optimization tasks. 
These algorithms rely solely on the cost function value, 
avoiding the cumbersome process of gradient calculation 
for the cost function. Generally, derivative-free algorithms 
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are more robust with respect to escaping local optima com-
pared to gradient-based algorithms. However, they tend to 
converge more slowly when a good initial guess is provided, 
or when the problem is convex. These algorithms are more 
suitable for high-dimension optimization problem.

When testing a new material, very limited prior informa-
tion is available related to the material model parameters. 
This makes it challenging to start the optimization algorithm 
from a good initial guess, necessitating the use of derivative-
free optimization methods in FEMU. Several typical deriva-
tive-free optimization algorithms are introduced here, along 
with their applications in FEMU. The one in most common 
use is the Nelder–Mead method. Other good alternatives for 
use in FEMU include the Genetic Algorithm, the Powell’s 
algorithm, simulated annealing, particle swarm optimiza-
tion, etc.

6.4.2.1 Nelder–Mead Method The Nelder–Mead method 
(NM method, or Nelder–Mead-simplex method) [405, 406], 
is a heuristic, simple, multidimensional and derivative-free 
optimization algorithm immensely popular in FEMU [59, 
61, 68, 226]. The algorithm begins with M + 1 points, which 
are considered as the vertices of a simplex. The simplex is 
then sequentially reflected, contracted, and expanded to 
minimize the function value at its vertices.

The algorithm is fairly efficient, as it typically evaluates 
the function value only once or twice per iteration. Moreo-
ver, due to its derivative-free nature, it is simple to integrate 
extra constraints into optimization tasks. However, it is still 
less efficient than the gradient-based methods when a good 
initial guess is provided and may sometimes get stuck in sub-
optimal solutions. The NM optimization algorithm has been 
used to identify the orthotropic elastic properties of wood 
[68, 69], the mode-I CZM parameters from a SENB test 
[58, 61, 226, 380], the viscoelastic parameters of a polymer 
[158], the anisotropy yield criteria of aluminum alloy [187], 
the modulus distribution in a bamboo specimen [256], etc.

6.4.2.2 Genetic Algorithm The Genetic Algorithm (GA) 
[407] is a meta-heuristic, evolutionary algorithm inspired 
by natural selection in biology. It begins with a randomly 
generated population of several individuals, or chromo-
somes. In the context of FEMU, each individual represents 
an unknown parameter vector. The gene in the algorithm 
is an identified parameter. The fitness (defined as the cost 
function value in the FEMU optimization problem) of each 
individual in the population is then calculated. Individuals 
with higher fitness scores are more likely to be selected for 
reproduction, mimicking the survival of the fittest in nature. 
Offspring for the next generation are produced from the 
selected individuals through genetic crossover and muta-
tion. The offspring generation produced will replace the 
individuals with lower fitness in the parent generation. The 



Finite Element Model Updating for Material Model Calibration: A Review and Guide to Practice  

algorithm continues to iterate through this process until a 
given stop criterion is met, at which point the process ter-
minates.

GA is also a derivative-free algorithm. It has decent effi-
ciency and can be easily parallelized [262, 408]. Moreover, 
it is suitable for high-dimensional optimization. However, 
the FEA model needs to be evaluated multiple times in each 
generation, which can be quite time-consuming. The algo-
rithm is likewise not a good option for simple problems, 
where the classical gradient-based algorithms are preferable. 
GA typically has a larger convergence radius than gradient-
based algorithms.

GA has also been extensively used in FEMU [49, 196, 
262, 337, 351]. Sun et al. [262] identified the mechanical 
parameters in different zones in a welded line via micro-
indentation tests and GA optimization. Aguir et al. [196] 
calibrated the elastoplastic behavior of a stainless steel 
using GA. To reduce the FEA workload in GA optimization, 
the authors trained an artificial neural network to predict 
responses instead of relying on FEA. Liu et al. [351] identi-
fied four damage parameters in the Bonora damage model, 
which is sensitive to temperature and strain rate, using GA. 
The algorithm identified the parameters by minimizing 
the gap between experimental and numerically simulated 
force–displacement curves.

6.4.2.3 Other Derivative‑Free Algorithms Several other 
derivative-free algorithms have also been considered in 
FEMU. The Powell algorithm was adopted in Ref. [362]. 
The authors compared the performance of several gradient-
based and derivative-free algorithms, concluding that the 
Powell algorithm performs best for identifying plasticity 
parameters.

The bisection method is a simple and robust derivative-
free algorithm. It works by repeatedly bisecting the region 
between two points and then selecting the subregion where 
the function changes sign. Touzeau et al. [365] used this 
method to calibrate the hyperelastic parameters in a dynamic 
framework. This algorithm, however, has poor efficiency, 
and is generally used as an initialization strategy for other, 
more efficient algorithms.

Simulated annealing is a meta-heuristic and a probabilis-
tic algorithm inspired by the annealing process in material 
science. This algorithm has a high probability of finding 
the global optimum, which makes it attractive [409, 410]. 
Particle swarm optimization (PSO) [411] is another meta-
heuristic algorithm; this one is inspired by social behavior. 
While attractive for detecting global optima, this algorithm 
is computationally expensive and sensitive to noise, so it is 
rarely employed on its own in FEMU. Instead, it is typically 
used to generate initial guesses [129, 374].

In addition to the above, the hill climbing algorithm, 
a meta-heuristic iterative local search algorithm, and the 

random search algorithm, a simple heuristic optimization 
method, are also feasible for FEMU optimization [210].

6.4.3  Hybrids of the Gradient‑Based and Derivative‑Free 
Methods

The derivative-free algorithms are more robust in terms of 
detecting a good solution but lack efficiency. The gradient-
based algorithms are, by contrast, much more efficient when 
the initial guess is reasonably close to the global optimum. 
A preferable approach to optimization is to combine both 
in order to exploit their individual advantages. A deriva-
tive-free algorithm can be used to get the initial guess, then 
the gradient-based methods are applied for more efficient 
parameter calibration. For instance, combining the genetic/
evolutionary algorithm and the LM algorithm [174, 412], or 
hybridizing PSO with a gradient-based optimization algo-
rithm [129], is a highly recommended approach that has 
proven effective in FEMU.

6.4.4  Trust Region Algorithm

The trust region algorithm begins by setting an initial 
estimation of the solution. A trust region is then defined 
in the vicinity of this initial solution. Within this region, 
we can safely assume (or “trust”, hence the name), that a 
constructed model (typically using a first-order [413] or 
a quadratic [414] model) can adequately approximate the 
cost function. By minimizing the constructed model within 
the trust region, we can arrive at a local solution. If this 
local solution performs better than the original one, the trust 
region is expanded, and the solution updated. If not, the trust 
region size is reduced.

The concept of the trust region algorithm is simple 
and effective. Such algorithms have seen widespread use 
in FEMU to optimize material model parameters, such as 
the orthotropic elastoplastic material model parameters for 
paper foils through biaxial tensile tests [250], the parameters 
in the Lubliner type material model for concrete [373], and 
the parameters in the von Mises yield criterion and power 
isotropic hardening law for thin-walled aluminum tubes 
[415].

6.5  Optimization Strategies

Currently, most algorithms optimize all parameters simul-
taneously in an iterative manner. The resulting high-dimen-
sional parameter hyperspace may lead to instability and 
low efficiency in parameter updating. Such optimization is 
especially challenging when identifying advanced material 
models with a large set of unknown parameters.
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An attractive and simple solution is to adopt a multi-
step optimization strategy, i.e., identifying different sets 
of parameters sequentially [47] instead of simultaneously. 
Schowtjak et al. [120] used a two-step optimization process 
to identify viscoelastic material parameters and damage-
related parameters. In the first step, they focused on identify-
ing only the viscoelastic material parameters, i.e., the Yeoh 
and relaxation parameters, from homogeneous deformation 
states. In this step, the damage parameters are inactive. In 
the second step, they calibrated the damage-related param-
eters from the inhomogeneous deformation states, with the 
viscoelastic parameters identified in the first step fixed.

Schemmann et al. [416] calibrated the elastic material 
parameters in the first step, and the viscous material param-
eters in the second step. Affagard et al. [307] identified the 
normal and tangential cohesive parameters sequentially and 
separately, and then simultaneously optimized all parameters 
in a single analysis. Satošek et al. [263] used a two-stage 
calibration procedure to identify the out-of-plane plastic 
anisotropy behavior of sheet metal from an indentation test. 
In the first step, they calibrated the in-plane parameters of 
the YLD2004–18p yield function. Then, they identified the 
remaining out-of-plane shear parameters from a ball indenta-
tion test after fixing the calibrated in-plane parameters. This 
two-stage calibration procedure reduces the dimensionality 
of the parametric hyperspace to only four parameters in the 
second step, significantly simplifying the inverse identifica-
tion procedure.

Data-assimilation is a process that integrates observa-
tional data with models to improve the accuracy of pre-
dictions. This process can employ various optimization 
methods, including both gradient-based and derivative-free 
algorithms. A recent study focused on using data assimila-
tion for the inverse calibration of material model parameters 
through DIC measurements and finite element simulations, 
with the goal of predicting the deformation behavior of 
materials [110].

6.6  High Dimensional Parameter Space 
Optimization for Heterogeneous Material

Identification of a heterogeneous model through an ordi-
nary optimization routine is computationally expensive and 
less robust [417] due to the inordinate number of material 
model parameters. Inverse identification therefore demands 
enhancements to the FEMU optimization, such as a double 
iterative optimization algorithm [257], new cost functions 
[404], and the application of a filter on the response field 
[299].

Considine et  al. [418] identified the heterogeneous, 
orthotropic elastic parameters of a cellulose-fiber compos-
ite [419]. The heterogeneity is significant for cellulose-fiber 
composites due to material defects. In their work [418], 

300 effective parameters are identified using the LM algo-
rithm. The Jacobian matrix calculation in the LM algorithm 
requires 301 FEA evaluations per iteration. The LM algo-
rithm is extremely time-consuming for such a large param-
eter hyperspace. Wu et al. [420] used GA and PSO algorithm 
to identify the spatially distribution of elastic modulus and 
Poisson’s ratio of a rock material. Their method might also 
be very time consuming to identify varied parameters in 
2000 elements. Borzeszkowski et al. [421] identified the 
heterogeneous material property distributions (up to 1089 
unknown variables) using trust-region interior reflective 
approach. These works used ordinary optimization algo-
rithms to calibrate the parameters in such a large parameter 
hyperspace, which is extremely time-consuming.

Gao et al. [256] identified the modulus gradient dis-
tribution of bamboo material by using a so-called double 
iterative technique, which is a combination of a fixed-point 
iteration method and the Nelder–Mead simplex algorithm. 
This optimization algorithm is the key to achieve reason-
able efficiency with such a large number of parameters. This 
optimization approach has also been used to identify the 
modulus distribution of a graphite material [257] and the 
modulus field and Poisson’s ratio field of a rock material 
[422]. Similar idea was also adopted by Kowalczyk [423] for 
identifying the orthotropic properties of composites. In this 
work, a heterogeneous parameter distribution is optimized 
during each iteration using the Gauss–Newton algorithm. 
The four orthotropic parameters are subsequently calculated 
as the average of the parameter fields. Witz et al. [424] used 
an image-based method to get the heterogeneous fiber ori-
entation distribution of crimped mineral wool material. This 
prior knowledge enabled a significant reduction of the num-
ber of unknown elastic material parameters to four.

6.7  Initial Guess

In most cases, the parameter identification problem is highly 
non-convex. A good initial guess for the parameter set may 
therefore be the dominant factor influencing the parameter 
identification performance. This is particularly important for 
identifying complex material that involve a large number of 
material model parameters. Schulte et al. [425] summarized 
three typical strategies for parameter initialization:

• Randomly generating the initial guess for the optimiza-
tion.

• Defining a physically meaningful range for each param-
eter and then randomly selecting each parameter within 
the defined range.

• Using the multi-step optimization strategy for parameter 
identification. The elastic parameters can be identified 
first and then fixed. The remaining parameters can then 
be identified more robustly.
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In real-world applications, the first strategy is the worst 
choice, since it is costly and less robust. The second strat-
egy is more effective, but requires extensive knowledge of 
the materials in question to constrain the parameters. This 
knowledge can come from experience or from literature; it 
can also be based on parameters for similar materials or 
theoretical calculation. The third strategy, as discussed 
in Sec. 6.4, permits more efficient and robust parameter 
identification.

In Ref. [425], a deep-learning-based method is proposed 
for parameter estimation. Initially, a dataset including a set 
of stress–strain curves is generated from numerical simula-
tions based on constitutive parameters. This dataset is then 
used to train an artificial neural network (ANN). The trained 
ANN model can efficiently estimate the parameters from a 
given stress–strain curve. The estimated parameters are then 
used as the initial guess for optimization-based parameter 
identification using FEMU.

The accuracy requirement for the initial guess can be 
reduced to an extent by fine-tuning the optimization algo-
rithm, optimization strategy and cost function. A hybrid 
approach that combines derivative-free and gradient-based 
algorithms can effectively balance convergence radius and 
convergence efficiency. A better cost function can enhance 
convexity, leading to better convergence.

6.8  Convergence Criteria

In most literature, the convergence criteria (also known as 
stop criteria) are routinely overlooked, as they are consid-
ered simple and highly user-dependent. However, conver-
gence criteria are an essential aspect of any optimization 
algorithm, having a strong influence on the efficiency and 
accuracy of the algorithms. Here, we recommend several 
feasible criteria based on the literature.

• The algorithm stops when a preset iteration number 
threshold is reached [426, 427].

• The maximum increment of all parameters at current 
iteration falls below a threshold, e.g., 10

−4 [143].
• The relative variation of the parameters (see below) falls 

below a threshold, such as 0.01% [336], 0.1% [257], 1% 
[258].

• One other possible criterion [132, 428], taking the GN 
algorithm as an example, is that the Euclidean norm of 
the multiplication of the Jacobian matrix and the residual 
falls below a threshold (e.g., 10

−5 for IDIC [132]).

(49)max
k

||||
p
(j+1)

k
−p

(j)

k

p
(j)

k

|||| < Threshold

7  Uncertainty Analysis

FEMU arrives at values for material model parameters 
through a complex and extended measurement process. 
A critical caveat is that these values are calibrated using 
a technique with a long measurement chain, where errors 
accumulate across three pillars: experimental, numerical and 
optimization. Once the parameters have been successfully 
identified, we are faced with the unavoidable question of 
how accurate and precise these material model parameters 
are. This question is challenging because FEMU relies on a 
material model that may not fully represent reality. MT1.0 
also face these issues. What remains uncertain, however, 
is the level of accuracy in the calibrated material model 
parameters.

In this section, uncertainty analysis in FEMU is briefly 
reviewed. Uncertainty analysis is vital for evaluating the reli-
ability of the identified results. There are two typical meth-
ods for evaluating identification uncertainty suggested in 
the literature: the Monte-Carlo method and the uncertainty 
propagation theory.

7.1  Monte‑Carlo Method and Digital Twin

The Monte-Carlo method [429, 430] is an effective and ver-
satile tool to determine the uncertainty of measurands [431]. 
It estimates identification uncertainty through repeated ran-
dom sampling, which could be either from experiments or 
simulation. The most straightforward and accurate strategy 
is to repeat the identification on replicated real tests with 
the same configuration, assuming sufficient test repetition is 
feasible. This approach covers all possible sources of uncer-
tainty in the characterization chain, with parameter uncer-
tainty calculated as the standard deviation of each parameter. 
However, repeating experiments and parameter identification 
multiple times is often impractical due to inefficiency.

Integrating the Monte-Carlo method with the Digital 
Twin (DT) concept [281] is more practical. It can disentan-
gle various error sources and investigate their impact on the 
identified parameters. DT has been widely used to evaluate 
the measurement uncertainty of optical measurement sys-
tems [432, 433]. DT can virtually mimic a real measurement 
system, considering various error contributors, such as the 
environment, the measurement device. Those contributors 
can then lead to the measurement uncertainty.

DT can also virtually simulate the real-word DIC test 
[434, 435] and FEMU identification. Figure 21a schemati-
cally illustrates the DT concept in FEMU. In DT, inputting 
the model parameters and the boundary condition into FEA 
allows us to numerically calculate the displacement fields. 
By applying the displacement fields to real speckle pattern 
images, the reference image and the deformed images can be 
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virtually generated. The uncertainty sources in DIC instru-
ments can be added to the virtually generated images. FEMU 
can estimate the constitutive parameters from these virtual 
images. Running the virtual DIC test and FEMU identifica-
tion several times in the DT can provide the distribution 
of the identified parameters. By comparing the identified 
parameters with the input material parameters, the parameter 
uncertainty in FEMU can be estimated.

DT is often employed to thoroughly examine error 
sources and their impact on identification. If all error sources 
can be quantified, DT can mimic the experiment, enabling 
the determination of uncertainty or confidence intervals for 
the identified parameters based on known material behavior. 
Various error sources in each step (Fig. 21b) in DIC, includ-
ing shape function [436], lens distortion [437], subset size 
selection [438], speckle patterns [439], camera calibration 
[440], etc., may affect the predicted material parameters, 

although it is challenging to quantify all these error sources 
in practice.

Some researchers employed the Monte-Carlo method to 
evaluate the uncertainty of FEMU. Gras et al. [164] evalu-
ated the uncertainty of the identified out-of-plane shear 
modulus of a layer-to-layer interlocked woven composite. 
They numerically deformed a reference image using dis-
placement fields from FEA with known material properties. 
To mimic real image uncertainty, they added random gray-
scale noise, following a Gaussian distribution obtained from 
real tests. Two hundred simulated samples were identified 
by FEMU, with the uncertainty of each parameter calculated 
as the corresponding standard deviation. While this numeri-
cal approach requires less labor, it remains computationally 
expensive. Similar methods have also been used to evaluate 
the uncertainty of VFM [441].

Fig. 21  Digital Twin for FEMU: a the schematic diagram for digital twin and b the error sources involved in the digital twin of stereo-DIC [121]
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In contrast to the bottom-up approach in DT, Maček et al. 
[442] developed guidelines for a two-stage error propaga-
tion model that produces more realistic confidence interval 
predictions based on a database of past DIC experiments. 
They measured the displacement error distribution of DIC 
from hundreds of real experiments that had taken place in a 
three-year span. The confidence intervals of inversely identi-
fied material parameters for several typical tests were deter-
mined from the displacement error using the Monte-Carlo 
method and sensitivity analysis. Furthermore, Sueki et al. 
[110] have suggested an FEMU method that utilizes Bayes-
ian data assimilation and is capable of estimating material 
model parameters and their associated confidence intervals 
simultaneously.

Creating an accurate DT that replicates the entire meas-
urement chain is a challenging task. Additionally, it does not 
account for material model errors. If the selected material 
model cannot perfectly describe the actual material behavior, 
the uncertainty predicted by the Monte-Carlo method might 
not be realistic. Another obstacle is the heavy computational 
burden involved in the Monte-Carlo method.

7.2  Uncertainty Propagation Theory

The other approach is based on the uncertainty propagation 
theory. This method can theoretically estimate the identifica-
tion uncertainty from the measurement uncertainty. For GN 
algorithms, the uncertainty can be evaluated by the covari-
ance matrix. The covariance matrix can be approximated as 
the inverse of the Hessian matrix at the converged state [52, 
133, 233]. The covariance matrix can also be normalized to 
obtain the correlation matrix in order to evaluate the correla-
tion between parameters. This is similar to the normalized 
Hessian matrix for sensitivity quantification.

Based on the covariance matrix, Neggers et al. [133] and 
Bertin et al. [40] derived the parameter uncertainty from the 
image noise and the applied force in FEMU-UFN. These 
works consider mainly the image noise, force noise, or dis-
placement errors. However, they neglected other sources 
of uncertainty (e.g., the loading error, strain window selec-
tion, model selection, etc.), which might also be crucial for 
FEMU. The advantage of this method is the high efficiency, 
since it avoids the repeated FEMU optimization in Monte-
Carlo method.

8  Open‑Source FEMU Software: FEMU‑DIC

We are accompanying the publication of this FEMU review 
paper by the release of FEMU-DIC,5 an open-source soft-
ware package available on GitHub. The objective of this 

software is to promote the use of FEMU by lowering the 
barrier of entry for new users. FEMU-DIC includes a stan-
dalone 2D-DIC software tool for kinematic field measure-
ments, which can be seamlessly integrated with the FEMU 
code. Additionally, FEMU-OPEN is compatible with com-
mercial DIC software such as that provided by MatchID 
and Correlated Solutions. FEMU-DIC is primarily written 
in MATLAB and is not intended to be a universal tool for 
all solid mechanics problems. Instead, it includes the basic 
functions necessary for FEMU. The default function of the 
software is to identify constitutive parameters in an ortho-
tropic elastic model, which users can easily adapt it to other 
identification tasks. The default FEA platform is COMSOL, 
but the software can be extended to work with other FEA 
software.

We do not claim any novelty for the software, rather, it 
serves as a starting point for PhD researchers and new prac-
titioners. We believe it will help readers to develop their own 
tools based on this review. This section provides insight into 
using FEMU-DIC, focusing on a case study of identifying 
orthotropic elasticity. The data used in this section can be 
downloaded from GitHub.

8.1  Software Description

To the best of the author’s knowledge, FEMU-DIC is the 
first open-source project that includes both DIC software and 
FEMU components. The structure of FEMU-DIC is given 
in Fig. 22. The DIC software is a standalone tool that can 
be used on its own if the user is interested in the deforma-
tion fields that can be reliably measured using 2D-DIC. It is 
based on a local DIC algorithm and is limited to first-order 
shape functions. The users can manually designate polygonal 
ROIs with open holes or notches. Basic DIC settings such as 
subset size, step size, as well as strain window size can be 
easily set by the user. We carefully optimized the DIC soft-
ware to ensure decent computational efficiency. The most 
time-consuming part of DIC, i.e., the image intensity inter-
polation, is implemented in C++ to enhance performance.

In FEMU-DIC, the FEA model is first built using com-
mercial software COMSOL Multiphysics and then exported 
as a MATLAB script, which facilitates automatic param-
eter updating through the integration of COMSOL with 
MATLAB. FEMU-ε N was selected as the cost function in 
order to eliminate the impact of rigid-body motion. The 
optimization algorithms available in the software include 
the Gauss–Newton and Nelder–Mead algorithm. Users 
can select the appropriate algorithm based on their specific 
task. The Gauss–Newton algorithm is implemented using 
numerical differentiation, while the Nelder–Mead algorithm 
is sourced from the optimization toolbox in MATLAB. In 
our software, we first calculate the displacement difference 
between DIC and FEA. Strain calculation is then applied to 5 https:// github. com/ BinCh enOPEN/ FEMU- DIC.

https://github.com/BinChenOPEN/FEMU-DIC
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this displacement difference, allowing us to get the strain 
error directly. This method can level the strain tensor and 
VSG size. More information on the FEMU-OPEN software 
is found in Table 11. More details about the use of the soft-
ware are available on GitHub. We may continue improving 
this open-source software in the future.

8.2  Case Study

We use the software to inversely identify the four ortho-
tropic elastic parameters. The test is a uniaxial tensile 
test of a perforated strip sample. The sample has a thick-
ness of 1 mm and an off-axis angle of 105◦ . The sample 
geometry information is given in Fig. 23a. A uniformly 
distributed force boundary condition with a value of 950 
N is applied. Speckle pattern images are numerically gen-
erated to mimic the real test, as shown in Fig. 23b. Noise-
free images are generated from the displacement fields 
simulated by FEA. The image size is 1501 × 601 pixels 
with a scale of 40 pixels/mm. The reference value of the 
constitutive parameters E

1
 , E

2
 , � , G

12
 is 13.9 GPa, 5 GPa, 

0.1, 2 GPa, respectively. In local DIC, the subset and step 
sizes are set as 21 × 21 and and 5 pixels, respectively. The 
initial guess of these parameters is given as 0.9 times the 
ground truth values. The strain field in the images can be 
measured by DIC software. The strain fields measured by 
the open-source DIC software are shown in Fig. 23c with 
a strain window size of 21 × 21 points.

In the inverse parameter identification process, open-
source or commercial DIC software (MatchID-2D or VIC-
2D) is used to calculate the strain fields, while the GN and 
NM algorithms, respectively, are used for optimization. The 
identified parameters are given in Table 12, which shows the 
results obtained with different combinations of DIC soft-
ware and optimization algorithms. All DIC software tools 
are capable of yielding decent parameters. Parameters E

2
 

and � are identified with relatively large errors, indicating 
that the sensitivity of the strain fields with respect to these 
two parameters is low. This highlights the importance of test 
design in FEMU.

Overall, FEMU-OPEN provides an easy-to-use software 
for both method developers and users. The users can use it 

Fig. 22  Flowchart of FEMU-OPEN software
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directly to identify the four orthotropic elastic parameters. 
They can also easily modify the software to solve their own 
research problems.

9  Concluding Remarks and Future Goals

This section first emphasizes the value of FEMU, followed 
by a summary of the implementation steps. Subsequently, 
the challenges and future goals of FEMU are discussed.

9.1  Concluding Remarks

FEMU is a parameter identification technique which has 
been widely adopted to identify multiple constitutive mate-
rial model parameters through one or a few tests. The tech-
nique has been attracting increasing attention from both 
academia and industry due to the widespread use of DIC 
techniques and the boom in computational power. The 
implementation of FEMU relies on the deep interconnection 
of the three pillars, experiments, simulation and optimiza-
tion (see Fig. 24).

The major advantages of FEMU include its adaptabil-
ity to different material models, its efficiency in reducing 
experimental efforts, and its potential for refining and select-
ing material models and straightforward calibration of com-
plex material models. However, simultaneously identifying 
multiple parameters using FEMU is not an easy task. The 
identified parameters may have high uncertainty and may not 

be unique for complex material models. Additionally, FEMU 
typically requires substantial experience for accurate calibra-
tion and the computational burden can also be an obstacle.

Several alternative approaches exist for each step of 
FEMU implementation. While the combination of different 
strategies for every step makes the FEMU technique highly 
flexible, it also complicates its use. In this review, we have 
examined the development and application of FEMU for 
calibrating material models. We have also reviewed the 
implementation details for the major steps in FEMU. The 
implementation details are summarized in Table 13, along 
with some remarks.

9.2  Challenges and Future Goals

FEMU is gradually transitioning into a mature technique 
but several challenges and disadvantages hinder its devel-
opment. It is, however, continuously developing in terms of 
functionality. The technique would benefit from wider appli-
cability, improved accuracy and enhanced robustness of the 
technique. The user experience is also important. There is a 
need for improvements in computational efficiency, stand-
ardization, user-friendly tools, etc.

9.2.1  Generic Test Design

The specimen geometry and loading path can significantly 
affect the accuracy and sensitivity of material parameter esti-
mation. There is no universal test configuration for inverse 
parameter identification, but finding sample geometries that 

Table 11  Summary of open-source software FEMU-OPEN

FEMU-OPEN components Settings

DIC
DIC platform Open-source 2D-DIC software or commercial software (VIC-2D or MatchID-2D)
Method Local DIC
Optimization algorithm IC-GN
Shape function First-order shape function
ROI selection Rectangle and/or polygon
Strain calculation Strain window method
FEMU
FEMU framework Direct-leveling method
Sample Uniaxial tensile test of perforated strip sample
Boundary condition Force boundary condition
Cost function FEMU-εN
Optimization algorithm Gauss–Newton or Nelder–Mead algorithm
Data fusion Interpolate from FEA mesh to DIC nodes
Initial guess Manually given
FEA solver COMSOL Multiphysics
Converge criteria A limited iteration number & the maximum relative parameter increment is larger 

than a threshold
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work well for specific material models can simplify FEMU 
implementation and contribute to standardization.

9.2.2  Heterogeneous Material Characterization

Most studies focus on the calibration of average model 
parameters for homogeneous materials. However, materi-
als such as wood and composites [443, 444] may have sig-
nificant microstructural heterogeneity. It would be more 

Fig. 23  a Schematic diagram 
of the numerical test with the 
FEA mesh superimposed. b The 
numerically generated speckle 
pattern image. c The strain 
fields measured by the open-
source DIC software

Table 12  The identified 
parameters and the FEMU-
software running time with 
the combination of different 
DIC software and optimization 
algorithms

Parameters E1 (GPa) E2 (GPa) � G12 (GPa) Running 
time (s)

Reference value 13.9 5 0.1 2 –
GN + Open-source DIC 13.903 5.2991 0.1021 1.9999 76
GN + MatchID-2D 13.966 5.0489 0.0997 2.0024 76
GN + VIC-2D 13.917 5.0159 0.0987 1.9996 71
NM + Open-source DIC 13.863 5.3709 0.0980 1.9995 246
NM + MatchID-2D 13.913 5.2816 0.0873 2.0057 229
NM + VIC-2D 13.824 5.1887 0.0873 2.0069 202
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accurate to model these materials using spatially distributed 
material parameters. For large structures, this would involve 
calibrating thousands of material parameters, which would 
necessitate the development of specific FEMU algorithms 
for this task. One promising approach is to use machine 
learning [445].

9.2.3  Multi‑physics Model Calibration

FEMU is suitable not only for calibrating mechanical 
properties, but also for other physical properties, such as 
thermomechanical properties. By combining multiple 
physical responses, such as thermal, mechanical, electri-
cal and hydrodynamical properties, FEMU can be used to 
identify different types of properties simultaneously. A basic 
requirement is that the physical responses of these proper-
ties can be experimentally measured and numerically simu-
lated. In the scenario of multi-physics characterization, it is 
necessary to carefully evaluate the sensitivity and accuracy 
of material parameters, as the parameters may be strongly 
coupled.

9.2.4  High‑Efficiency FEMU

A challenging issue in FEMU is the heavy computational 
burden from FEA, particularly for complex material mod-
els. The identification process can take hours or even days 
for a set of results. The most direct but costly solution is to 
invest in more powerful computational hardware. The other 

possibility is to use parallel calculation. Efforts to develop 
new optimization algorithms, optimized cost functions and 
more accurate and simpler material models are also help-
ful. Integrating FEA and experimental measurement could 
eliminate some intermediate calculations and thus improve 
efficiency. However, this approach requires careful control 
of the core code in the FEA solver, as well as for speckle 
pattern image processing.

9.2.5  Deep Learning Aided Parameter Identification

The conventional inverse parameter identification methods, 
such as FEMU, involves multiple implementation proce-
dures. The rapid development of deep learning or artificial 
intelligence (AI) provides a very promising and effective 
alternative to FEMU. The concept of a digital twin [446], 
which involves numerically mimicking real experiments, 
provides an efficient way to generate large datasets for train-
ing deep learning models [447].

In the scenario of FEMU, deep learning [20, 425, 445, 
447–452] can contribute in several key steps such as cost 
function construction [453], strain measurement [454] and 
material model discovering [455], stress analysis [456, 457]. 
It can also identify the material parameters from experi-
mental data using artificial neural networks (ANNs) [445, 
449, 458–461], convolutional neural network (CNN) [447, 
462, 463], and recurrent neural network (RNN) [464–466]. 
Andrade-Campos et al. [20] compared the deep-learning-
based method with the VFM and FEMU methods. These 

Fig. 24  Interdependence 
between the experiment, 
numerical simulation, and opti-
mization in FEMU
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methods show similar errors. The deep-learning-based 
method is independent of the initial guess but with disad-
vantage of high computational burden for database genera-
tion and model training.

9.2.6  Standardization

FEMU is primarily used in the academic world, despite 
its obvious benefits in engineering design. One reason for 
that is the lack of standardization for this technique. Even 
for experienced researchers, the identification results can 
vary significantly for the same material due to changes in 
specimen geometry, cost function, etc. It is also important 
to establish an accepted benchmark in terms of criteria 
and datasets to fairly evaluate the performance of different 
FEMU methods. Finally, the terminology used in FEMU 
needs to be clearly defined and standardized.

9.2.7  All‑in‑One User‑Friendly Platform Development

FEMU is often implemented across multiple platforms: a 
commercial FEA solver for modeling, commercial or in-
house DIC software for kinematic field measurement, and 
self-developed scripts for parameter identification. These 
separate platforms reduce convenience and introduce com-
plexity, and potential data transfer errors. It is an obstacle 
that prevents more widespread use among engineers in the 
industry. An all-in-one user-friendly platform would be 
beneficial.
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